ColossalAI/colossalai/gemini/memory_tracer/memstats_collector.py

148 lines
5.4 KiB
Python
Raw Normal View History

from colossalai.gemini.memory_tracer import GLOBAL_MODEL_DATA_TRACER
from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor
from colossalai.utils.memory import colo_device_memory_used
import torch
import time
2022-04-01 01:22:33 +00:00
from typing import List
class MemStatsCollector:
2022-04-01 01:22:33 +00:00
"""
A Memory statistic collector.
It works in two phases.
Phase 1. Collection Phase: collect memory usage statistics of CPU and GPU.
The first iteration of DNN training.
Phase 2. Runtime Phase: use the read-only collected stats
The rest iterations of DNN training.
2022-04-01 01:22:33 +00:00
It has a Sampling counter which is reset after DNN training iteration.
"""
def __init__(self) -> None:
self._mem_monitor = SyncCudaMemoryMonitor()
2022-04-01 01:22:33 +00:00
self._model_data_cuda_list = []
self._overall_cuda_list = []
2022-04-01 01:22:33 +00:00
self._model_data_cpu_list = []
self._overall_cpu_list = []
self._non_model_data_cuda_list = []
self._non_model_data_cpu_list = []
self._sampling_time = []
self._start_flag = False
self._step_idx = 0
self._step_total = 0
def overall_mem_stats(self, device_type: str) -> List[int]:
2022-04-01 01:22:33 +00:00
if device_type == 'cuda':
return self._overall_cuda_list
elif device_type == 'cpu':
return self._overall_cpu_list
else:
raise TypeError
def model_data_list(self, device_type: str) -> List[int]:
2022-04-01 01:22:33 +00:00
if device_type == 'cuda':
return self._model_data_cuda_list
2022-04-01 01:22:33 +00:00
elif device_type == 'cpu':
return self._model_data_cpu_list
else:
raise TypeError
2022-04-01 01:22:33 +00:00
def non_model_data_list(self, device_type: str) -> List[int]:
2022-04-01 01:22:33 +00:00
if device_type == 'cuda':
return self._non_model_data_cuda_list
2022-04-01 01:22:33 +00:00
elif device_type == 'cpu':
return self._non_model_data_cpu_list
2022-04-01 01:22:33 +00:00
else:
raise TypeError
def next_period_non_model_data_usage(self, device_type: str) -> int:
"""Get max non model data memory usage of current sampling period
Args:
device_type (str): device type, can be 'cpu' or 'cuda'.
Returns:
int: max non model data memory usage of current sampling period
"""
assert not self._start_flag, 'Cannot get mem stats info during collection phase.'
assert self._step_total > 0, 'Cannot get mem stats info before collection phase.'
next_non_model_data = self.non_model_data_list(device_type)[self._step_idx]
self._step_idx = (self._step_idx + 1) % self._step_total
return next_non_model_data
@property
def sampling_time(self):
return [t - self._sampling_time[0] for t in self._sampling_time]
def start_collection(self):
self._start_flag = True
self._mem_monitor.start()
def finish_collection(self):
self.sample_overall_data()
self._step_total = len(self._sampling_time)
self._start_flag = False
self._mem_monitor.finish()
def sample_model_data(self) -> None:
"""Sampling model data statistics.
"""
if self._start_flag:
cuda_mem, cpu_mem = GLOBAL_MODEL_DATA_TRACER.both_mem_usage
self._model_data_cuda_list.append(cuda_mem)
self._model_data_cpu_list.append(cpu_mem)
def sample_overall_data(self) -> None:
"""Sampling non model data statistics.
"""
if self._start_flag:
# overall data recording is after model data recording
if len(self._model_data_cuda_list) == 0:
return
self._overall_cuda_list.append(self._mem_monitor.finish())
self._overall_cpu_list.append(colo_device_memory_used(torch.device('cpu')))
assert len(self._model_data_cuda_list) == len(self._overall_cuda_list)
self._non_model_data_cuda_list.append(self._overall_cuda_list[-1] - self._model_data_cuda_list[-1])
self._non_model_data_cpu_list.append(self._overall_cpu_list[-1] - self._model_data_cpu_list[-1])
self._sampling_time.append(time.time())
self._mem_monitor.start()
def sample_memstats(self) -> None:
"""
Sampling memory statistics.
Record the current model data CUDA memory usage as well as system CUDA memory usage.
2022-04-01 01:22:33 +00:00
Advance the sampling cnter.
"""
if self._start_flag:
2022-04-01 01:22:33 +00:00
self._model_data_cuda_list.append(GLOBAL_MODEL_DATA_TRACER.cuda_usage)
self._overall_cuda_list.append(self._mem_monitor.finish())
self._non_model_data_cuda_list.append(self._overall_cuda_list[-1] - self._model_data_cuda_list[-1])
2022-04-01 01:22:33 +00:00
self._model_data_cpu_list.append(GLOBAL_MODEL_DATA_TRACER.cpu_usage)
# FIXME(jiaruifang) cpu sys used should also return from self._mem_monitor()
2022-04-01 01:22:33 +00:00
self._overall_cpu_list.append(colo_device_memory_used(torch.device(f'cpu')))
self._non_model_data_cpu_list.append(self._overall_cpu_list[-1] - self._model_data_cpu_list[-1])
self._sampling_time.append(time.time())
self._mem_monitor.start()
def clear(self) -> None:
2022-04-01 01:22:33 +00:00
self._model_data_cuda_list = []
self._overall_cuda_list = []
2022-04-01 01:22:33 +00:00
self._model_data_cpu_list = []
self._overall_cpu_list = []
self._non_model_data_cpu_list = []
self._non_model_data_cuda_list = []
self._start_flag = False
self._step_idx = 0
self._step_total = 0