mirror of https://github.com/hpcaitech/ColossalAI
148 lines
5.4 KiB
Python
148 lines
5.4 KiB
Python
from colossalai.gemini.memory_tracer import GLOBAL_MODEL_DATA_TRACER
|
|
from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor
|
|
from colossalai.utils.memory import colo_device_memory_used
|
|
|
|
import torch
|
|
import time
|
|
from typing import List
|
|
|
|
|
|
class MemStatsCollector:
|
|
"""
|
|
A Memory statistic collector.
|
|
It works in two phases.
|
|
Phase 1. Collection Phase: collect memory usage statistics of CPU and GPU.
|
|
The first iteration of DNN training.
|
|
Phase 2. Runtime Phase: use the read-only collected stats
|
|
The rest iterations of DNN training.
|
|
|
|
It has a Sampling counter which is reset after DNN training iteration.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
self._mem_monitor = SyncCudaMemoryMonitor()
|
|
self._model_data_cuda_list = []
|
|
self._overall_cuda_list = []
|
|
|
|
self._model_data_cpu_list = []
|
|
self._overall_cpu_list = []
|
|
|
|
self._non_model_data_cuda_list = []
|
|
self._non_model_data_cpu_list = []
|
|
self._sampling_time = []
|
|
|
|
self._start_flag = False
|
|
self._step_idx = 0
|
|
self._step_total = 0
|
|
|
|
def overall_mem_stats(self, device_type: str) -> List[int]:
|
|
if device_type == 'cuda':
|
|
return self._overall_cuda_list
|
|
elif device_type == 'cpu':
|
|
return self._overall_cpu_list
|
|
else:
|
|
raise TypeError
|
|
|
|
def model_data_list(self, device_type: str) -> List[int]:
|
|
if device_type == 'cuda':
|
|
return self._model_data_cuda_list
|
|
elif device_type == 'cpu':
|
|
return self._model_data_cpu_list
|
|
else:
|
|
raise TypeError
|
|
|
|
def non_model_data_list(self, device_type: str) -> List[int]:
|
|
if device_type == 'cuda':
|
|
return self._non_model_data_cuda_list
|
|
elif device_type == 'cpu':
|
|
return self._non_model_data_cpu_list
|
|
else:
|
|
raise TypeError
|
|
|
|
def next_period_non_model_data_usage(self, device_type: str) -> int:
|
|
"""Get max non model data memory usage of current sampling period
|
|
|
|
Args:
|
|
device_type (str): device type, can be 'cpu' or 'cuda'.
|
|
|
|
Returns:
|
|
int: max non model data memory usage of current sampling period
|
|
"""
|
|
assert not self._start_flag, 'Cannot get mem stats info during collection phase.'
|
|
assert self._step_total > 0, 'Cannot get mem stats info before collection phase.'
|
|
next_non_model_data = self.non_model_data_list(device_type)[self._step_idx]
|
|
self._step_idx = (self._step_idx + 1) % self._step_total
|
|
return next_non_model_data
|
|
|
|
@property
|
|
def sampling_time(self):
|
|
return [t - self._sampling_time[0] for t in self._sampling_time]
|
|
|
|
def start_collection(self):
|
|
self._start_flag = True
|
|
self._mem_monitor.start()
|
|
|
|
def finish_collection(self):
|
|
self.sample_overall_data()
|
|
self._step_total = len(self._sampling_time)
|
|
self._start_flag = False
|
|
self._mem_monitor.finish()
|
|
|
|
def sample_model_data(self) -> None:
|
|
"""Sampling model data statistics.
|
|
"""
|
|
if self._start_flag:
|
|
cuda_mem, cpu_mem = GLOBAL_MODEL_DATA_TRACER.both_mem_usage
|
|
self._model_data_cuda_list.append(cuda_mem)
|
|
self._model_data_cpu_list.append(cpu_mem)
|
|
|
|
def sample_overall_data(self) -> None:
|
|
"""Sampling non model data statistics.
|
|
"""
|
|
if self._start_flag:
|
|
# overall data recording is after model data recording
|
|
if len(self._model_data_cuda_list) == 0:
|
|
return
|
|
|
|
self._overall_cuda_list.append(self._mem_monitor.finish())
|
|
self._overall_cpu_list.append(colo_device_memory_used(torch.device('cpu')))
|
|
|
|
assert len(self._model_data_cuda_list) == len(self._overall_cuda_list)
|
|
|
|
self._non_model_data_cuda_list.append(self._overall_cuda_list[-1] - self._model_data_cuda_list[-1])
|
|
self._non_model_data_cpu_list.append(self._overall_cpu_list[-1] - self._model_data_cpu_list[-1])
|
|
self._sampling_time.append(time.time())
|
|
self._mem_monitor.start()
|
|
|
|
def sample_memstats(self) -> None:
|
|
"""
|
|
Sampling memory statistics.
|
|
Record the current model data CUDA memory usage as well as system CUDA memory usage.
|
|
Advance the sampling cnter.
|
|
"""
|
|
if self._start_flag:
|
|
self._model_data_cuda_list.append(GLOBAL_MODEL_DATA_TRACER.cuda_usage)
|
|
self._overall_cuda_list.append(self._mem_monitor.finish())
|
|
self._non_model_data_cuda_list.append(self._overall_cuda_list[-1] - self._model_data_cuda_list[-1])
|
|
|
|
self._model_data_cpu_list.append(GLOBAL_MODEL_DATA_TRACER.cpu_usage)
|
|
# FIXME(jiaruifang) cpu sys used should also return from self._mem_monitor()
|
|
self._overall_cpu_list.append(colo_device_memory_used(torch.device(f'cpu')))
|
|
self._non_model_data_cpu_list.append(self._overall_cpu_list[-1] - self._model_data_cpu_list[-1])
|
|
self._sampling_time.append(time.time())
|
|
self._mem_monitor.start()
|
|
|
|
def clear(self) -> None:
|
|
self._model_data_cuda_list = []
|
|
self._overall_cuda_list = []
|
|
|
|
self._model_data_cpu_list = []
|
|
self._overall_cpu_list = []
|
|
|
|
self._non_model_data_cpu_list = []
|
|
self._non_model_data_cuda_list = []
|
|
|
|
self._start_flag = False
|
|
self._step_idx = 0
|
|
self._step_total = 0
|