mirror of https://github.com/hpcaitech/ColossalAI
[refactor] moving memtracer to gemini (#801)
parent
8711c706f4
commit
4d9332b4c5
|
@ -8,8 +8,6 @@ from colossalai.registry import OPHOOKS
|
|||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.core import global_context as gpc
|
||||
from typing import Union
|
||||
from colossalai.utils.memory_tracer import AsyncMemoryMonitor
|
||||
import os
|
||||
import math
|
||||
|
||||
|
||||
|
@ -25,6 +23,7 @@ class MemTracerOpHook(BaseOpHook):
|
|||
"""
|
||||
|
||||
def __init__(self, warmup: int = 50, refreshrate: int = 10, data_prefix: str = "memstats"):
|
||||
from colossalai.gemini.memory_tracer import AsyncMemoryMonitor
|
||||
super().__init__()
|
||||
self.async_mem_monitor = AsyncMemoryMonitor()
|
||||
self._curiter = 0
|
||||
|
|
|
@ -12,10 +12,10 @@ from colossalai.core import global_context as gpc
|
|||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.utils import switch_virtual_pipeline_parallel_rank
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.zero.sharded_model import ShardedModelV2
|
||||
|
||||
from ._base_schedule import BaseSchedule
|
||||
|
||||
|
||||
def get_tensor_shape():
|
||||
if hasattr(gpc.config, 'TENSOR_SHAPE'):
|
||||
return gpc.config.TENSOR_SHAPE
|
||||
|
@ -23,7 +23,8 @@ def get_tensor_shape():
|
|||
if not gpc.is_initialized(ParallelMode.PIPELINE):
|
||||
return None
|
||||
|
||||
if hasattr(gpc.config, 'SEQ_LENGTH') and hasattr(gpc.config, 'GLOBAL_BATCH_SIZE') and hasattr(gpc.config, 'GLOBAL_BATCH_SIZE') and hasattr(gpc.config, 'HIDDEN_SIZE'):
|
||||
if hasattr(gpc.config, 'SEQ_LENGTH') and hasattr(gpc.config, 'GLOBAL_BATCH_SIZE') and hasattr(
|
||||
gpc.config, 'GLOBAL_BATCH_SIZE') and hasattr(gpc.config, 'HIDDEN_SIZE'):
|
||||
if gpc.is_initialized(ParallelMode.DATA):
|
||||
dp_size = gpc.get_world_size(ParallelMode.DATA)
|
||||
else:
|
||||
|
@ -34,12 +35,12 @@ def get_tensor_shape():
|
|||
seq_size = 1
|
||||
|
||||
tensor_shape = (gpc.config.SEQ_LENGTH // seq_size,
|
||||
gpc.config.GLOBAL_BATCH_SIZE // dp_size // gpc.config.NUM_MICRO_BATCHES,
|
||||
gpc.config.HIDDEN_SIZE)
|
||||
gpc.config.GLOBAL_BATCH_SIZE // dp_size // gpc.config.NUM_MICRO_BATCHES, gpc.config.HIDDEN_SIZE)
|
||||
return tensor_shape
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def pack_return_tensors(return_tensors):
|
||||
output, label = tuple(zip(*return_tensors))
|
||||
if isinstance(output[0], torch.Tensor):
|
||||
|
@ -114,7 +115,7 @@ class PipelineSchedule(BaseSchedule):
|
|||
def pre_processing(self, engine):
|
||||
# TODO: remove this after testing new zero with pipeline parallelism
|
||||
model = engine.model
|
||||
if isinstance(model, (NaiveAMPModel, ShardedModelV2)):
|
||||
if isinstance(model, (NaiveAMPModel)) or hasattr(model, 'colo_attr'):
|
||||
self.dtype = torch.half
|
||||
model = model.model
|
||||
sig = inspect.signature(model.forward)
|
||||
|
@ -125,7 +126,7 @@ class PipelineSchedule(BaseSchedule):
|
|||
def _call_engine(model, input_tensor, batch_data):
|
||||
if isinstance(model, NaiveAMPModel):
|
||||
sig = inspect.signature(model.model.forward)
|
||||
elif isinstance(model, ShardedModelV2):
|
||||
elif hasattr(model, 'colo_attr'):
|
||||
sig = inspect.signature(model.module.forward)
|
||||
else:
|
||||
sig = inspect.signature(model.forward)
|
||||
|
@ -385,7 +386,8 @@ class InterleavedPipelineSchedule(PipelineSchedule):
|
|||
self.num_model_chunks = num_model_chunks
|
||||
|
||||
def pre_processing(self, engine):
|
||||
if isinstance(engine.model, ShardedModelV2):
|
||||
# FIXME(jiaruifang) we shall not use ShardedModelV2 in pipeline mode, due to circular dependency.
|
||||
if hasattr(engine.model, 'colo_attr'):
|
||||
self.dtype = torch.half
|
||||
elif isinstance(engine.model[0], NaiveAMPModel):
|
||||
self.dtype = torch.half
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from .model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
||||
from .memory_monitor import AsyncMemoryMonitor, SyncCudaMemoryMonitor
|
||||
from .memstats_collector import MemStatsCollector
|
||||
|
||||
__all__ = ['AsyncMemoryMonitor', 'SyncCudaMemoryMonitor', 'MemStatsCollector']
|
||||
__all__ = ['AsyncMemoryMonitor', 'SyncCudaMemoryMonitor', 'MemStatsCollector', 'GLOBAL_MODEL_DATA_TRACER']
|
|
@ -5,7 +5,7 @@ import json
|
|||
|
||||
import torch
|
||||
|
||||
from colossalai.utils.memory import colo_device_memory_used
|
||||
from colossalai.utils import colo_device_memory_used
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
|
|
@ -1,6 +1,7 @@
|
|||
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
||||
from colossalai.gemini.memory_tracer import GLOBAL_MODEL_DATA_TRACER
|
||||
from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor
|
||||
from colossalai.utils.memory import colo_device_memory_used
|
||||
from colossalai.utils.memory_tracer import SyncCudaMemoryMonitor
|
||||
|
||||
import torch
|
||||
import time
|
||||
from typing import List
|
||||
|
@ -138,6 +139,9 @@ class MemStatsCollector:
|
|||
self._model_data_cpu_list = []
|
||||
self._overall_cpu_list = []
|
||||
|
||||
self._non_model_data_cpu_list = []
|
||||
self._non_model_data_cuda_list = []
|
||||
|
||||
self._start_flag = False
|
||||
self._step_idx = 0
|
||||
self._step_total = 0
|
|
@ -5,8 +5,8 @@ from colossalai.utils import get_current_device
|
|||
from colossalai.zero.sharded_param.tensor_utils import colo_model_data_tensor_move_inline, colo_tensor_mem_usage
|
||||
from colossalai.utils.memory import colo_device_memory_capacity
|
||||
from colossalai.zero.sharded_param.tensorful_state import StatefulTensor
|
||||
from colossalai.utils.memory_tracer import MemStatsCollector
|
||||
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
||||
from colossalai.gemini.memory_tracer import MemStatsCollector
|
||||
from colossalai.gemini.memory_tracer import GLOBAL_MODEL_DATA_TRACER
|
||||
from typing import Type
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,9 @@
|
|||
import torch
|
||||
|
||||
|
||||
def _format_number(val, prec=5):
|
||||
if isinstance(val, float):
|
||||
return f'{val:.{prec}g}'
|
||||
elif torch.is_tensor(val) and torch.is_floating_point(val):
|
||||
return f'{val.item():.{prec}g}'
|
||||
return val
|
|
@ -14,14 +14,7 @@ from colossalai.logging import DistributedLogger
|
|||
from colossalai.utils import report_memory_usage, is_dp_rank_0, \
|
||||
is_tp_rank_0, is_no_pp_or_last_stage, MultiTimer
|
||||
from ._base_hook import BaseHook
|
||||
|
||||
|
||||
def _format_number(val, prec=5):
|
||||
if isinstance(val, float):
|
||||
return f'{val:.{prec}g}'
|
||||
elif torch.is_tensor(val) and torch.is_floating_point(val):
|
||||
return f'{val.item():.{prec}g}'
|
||||
return val
|
||||
from ._commons_ import _format_number
|
||||
|
||||
|
||||
class LogByEpochHook(BaseHook):
|
||||
|
@ -35,10 +28,7 @@ class LogByEpochHook(BaseHook):
|
|||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
logger,
|
||||
interval: int = 1,
|
||||
priority: int = 1):
|
||||
def __init__(self, logger, interval: int = 1, priority: int = 1):
|
||||
super().__init__(priority)
|
||||
self.logger = logger
|
||||
self._interval = interval
|
||||
|
@ -63,14 +53,12 @@ class LogMetricByStepHook(BaseHook):
|
|||
def after_train_iter(self, trainer, *args):
|
||||
trainer.states['step_metrics'] = dict()
|
||||
for metric_name, metric_calculator in trainer.states['metrics']['train'].items():
|
||||
trainer.states['step_metrics'][metric_name.lower()] = \
|
||||
f'{_format_number(metric_calculator.get_last_step_value())}'
|
||||
trainer.states['step_metrics'][metric_name.lower()] = metric_calculator.get_last_step_value()
|
||||
|
||||
def after_test_iter(self, trainer, *args):
|
||||
trainer.states['step_metrics'] = dict()
|
||||
for metric_name, metric_calculator in trainer.states['metrics']['test'].items():
|
||||
trainer.states['step_metrics'][metric_name.lower()] = \
|
||||
f'{_format_number(metric_calculator.get_last_step_value())}'
|
||||
trainer.states['step_metrics'][metric_name.lower()] = metric_calculator.get_last_step_value()
|
||||
|
||||
|
||||
@HOOKS.register_module
|
||||
|
@ -85,18 +73,14 @@ class LogMetricByEpochHook(LogByEpochHook):
|
|||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
logger,
|
||||
interval: int = 1,
|
||||
priority: int = 10) -> None:
|
||||
def __init__(self, logger, interval: int = 1, priority: int = 10) -> None:
|
||||
super().__init__(logger, interval, priority)
|
||||
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0() and is_no_pp_or_last_stage()
|
||||
|
||||
def _get_str(self, trainer, mode):
|
||||
msg = []
|
||||
for metric_name, metric_calculator in trainer.states['metrics'][mode].items():
|
||||
msg.append(
|
||||
f'{metric_name} = {_format_number(metric_calculator.get_accumulated_value())}')
|
||||
msg.append(f'{metric_name} = {_format_number(metric_calculator.get_accumulated_value())}')
|
||||
msg = ' | '.join(msg)
|
||||
return msg
|
||||
|
||||
|
@ -130,12 +114,13 @@ class TensorboardHook(BaseHook):
|
|||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
log_dir: str,
|
||||
ranks: List = None,
|
||||
parallel_mode: ParallelMode = ParallelMode.GLOBAL,
|
||||
priority: int = 10,
|
||||
) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
log_dir: str,
|
||||
ranks: List = None,
|
||||
parallel_mode: ParallelMode = ParallelMode.GLOBAL,
|
||||
priority: int = 10,
|
||||
) -> None:
|
||||
super().__init__(priority=priority)
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
|
@ -280,13 +265,14 @@ class LogMemoryByEpochHook(LogByEpochHook):
|
|||
log_eval (bool, optional): Whether writes in evaluation, defaults to True.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
logger: DistributedLogger,
|
||||
interval: int = 1,
|
||||
priority: int = 10,
|
||||
log_eval: bool = True,
|
||||
report_cpu: bool = False, # no reference
|
||||
) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
logger: DistributedLogger,
|
||||
interval: int = 1,
|
||||
priority: int = 10,
|
||||
log_eval: bool = True,
|
||||
report_cpu: bool = False, # no reference
|
||||
) -> None:
|
||||
super().__init__(logger=logger, interval=interval, priority=priority)
|
||||
self._log_eval = log_eval
|
||||
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0()
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from colossalai.registry import HOOKS
|
||||
from torch import Tensor
|
||||
from colossalai.trainer.hooks import BaseHook
|
||||
from colossalai.utils.memory_tracer import AsyncMemoryMonitor
|
||||
from colossalai.gemini.memory_tracer import AsyncMemoryMonitor
|
||||
|
||||
|
||||
@HOOKS.register_module
|
||||
|
|
|
@ -13,6 +13,7 @@ from colossalai.registry import HOOKS
|
|||
from colossalai.utils import get_current_device, is_no_pp_or_last_stage
|
||||
|
||||
from ._base_hook import BaseHook
|
||||
from ._commons_ import _format_number
|
||||
|
||||
|
||||
class Metric(ABC):
|
||||
|
@ -51,7 +52,7 @@ class Metric(ABC):
|
|||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_last_step_value(self):
|
||||
def get_last_step_value(self) -> str:
|
||||
"""Returns the metric value in the last iteration.
|
||||
"""
|
||||
pass
|
||||
|
@ -120,10 +121,10 @@ class LossMetric(Metric):
|
|||
self.accum_loss.div_(self.count)
|
||||
return self.accum_loss.item()
|
||||
|
||||
def get_last_step_value(self):
|
||||
def get_last_step_value(self) -> str:
|
||||
"""Returns :attr:`last_step_loss`.
|
||||
"""
|
||||
return self.last_step_loss
|
||||
return str(self.last_step_loss)
|
||||
|
||||
@staticmethod
|
||||
def is_better(a, b):
|
||||
|
@ -148,8 +149,8 @@ class LearningRateMetric(Metric):
|
|||
def update(self, lr) -> None:
|
||||
self.lr = lr
|
||||
|
||||
def get_last_step_value(self):
|
||||
return self.lr
|
||||
def get_last_step_value(self) -> str:
|
||||
return str(self.lr)
|
||||
|
||||
def get_accumulated_value(self):
|
||||
return self.lr
|
||||
|
@ -203,10 +204,10 @@ class AccuracyMetric(Metric):
|
|||
self.accumulated_sum += self.last_step_sum
|
||||
self.accumulated_correct += self.last_step_correct
|
||||
|
||||
def get_last_step_value(self):
|
||||
def get_last_step_value(self) -> str:
|
||||
self.last_step_sum = all_reduce(self.last_step_sum, ParallelMode.DATA)
|
||||
self.last_step_correct = all_reduce(self.last_step_correct, ParallelMode.DATA)
|
||||
return (self.last_step_correct / self.last_step_sum).item()
|
||||
return str(_format_number((self.last_step_correct / self.last_step_sum).item()))
|
||||
|
||||
def get_accumulated_value(self):
|
||||
self.accumulated_sum = all_reduce(self.accumulated_sum, ParallelMode.DATA)
|
||||
|
@ -322,7 +323,8 @@ class ThroughputMetric(Metric):
|
|||
Args:
|
||||
epoch_only (bool): Whether the metric only read for the full epoch.
|
||||
"""
|
||||
def __init__(self, epoch_only: bool, ignored_steps: int = 0):
|
||||
|
||||
def __init__(self, epoch_only: bool, ignored_steps: int = 0, tflop_per_step: int = 0):
|
||||
super().__init__(epoch_only=epoch_only)
|
||||
self.ignored_steps = ignored_steps
|
||||
self.cur_steps = 0
|
||||
|
@ -330,6 +332,7 @@ class ThroughputMetric(Metric):
|
|||
self.accumulated_used_time = torch.zeros(1, device=get_current_device())
|
||||
self.last_step_num_samples = torch.zeros(1, device=get_current_device())
|
||||
self.last_step_used_time = torch.zeros(1, device=get_current_device())
|
||||
self._tflop_per_step = tflop_per_step
|
||||
|
||||
def reset(self) -> None:
|
||||
# self.cur_steps = 0
|
||||
|
@ -346,13 +349,18 @@ class ThroughputMetric(Metric):
|
|||
self.accumulated_num_samples += self.last_step_num_samples
|
||||
self.accumulated_used_time += self.last_step_used_time
|
||||
|
||||
def get_last_step_value(self):
|
||||
def get_last_step_value(self) -> str:
|
||||
self.last_step_used_time = all_reduce(self.last_step_used_time, ParallelMode.DATA) / \
|
||||
gpc.get_world_size(ParallelMode.DATA)
|
||||
self.last_step_num_samples = all_reduce(self.last_step_num_samples, ParallelMode.DATA)
|
||||
return (self.last_step_num_samples / (self.last_step_used_time + 1e-12)).item()
|
||||
sample_per_sec = _format_number(self.last_step_num_samples / (self.last_step_used_time + 1e-12).item())
|
||||
if self._tflop_per_step > 0:
|
||||
tflops = _format_number(self._tflop_per_step / (self.last_step_used_time.item() + 1e-12))
|
||||
return f"{sample_per_sec} sample_per_sec, {tflops} Tflops"
|
||||
else:
|
||||
return f"{sample_per_sec} sample_per_sec"
|
||||
|
||||
def get_accumulated_value(self):
|
||||
def get_accumulated_value(self) -> float:
|
||||
self.accumulated_used_time = all_reduce(self.accumulated_used_time, ParallelMode.DATA) / \
|
||||
gpc.get_world_size(ParallelMode.DATA)
|
||||
self.accumulated_num_samples = all_reduce(self.accumulated_num_samples, ParallelMode.DATA)
|
||||
|
@ -373,14 +381,18 @@ class ThroughputHook(MetricHook):
|
|||
defaults to 10. If different hooks share same priority, the order of printing would
|
||||
depend on the hooks order in the hook list.
|
||||
"""
|
||||
def __init__(self, ignored_steps: int = 0, priority: int = 10):
|
||||
|
||||
def __init__(self, ignored_steps: int = 0, priority: int = 10, tflop_per_step: int = 0):
|
||||
super().__init__(priority)
|
||||
self.ignored_steps = ignored_steps
|
||||
self._tflop_per_step = tflop_per_step
|
||||
|
||||
def after_hook_is_attached(self, trainer):
|
||||
self._check_metric_states_initialization(trainer)
|
||||
if self._is_stage_to_compute:
|
||||
self.metric = ThroughputMetric(epoch_only=True, ignored_steps=self.ignored_steps)
|
||||
self.metric = ThroughputMetric(epoch_only=True,
|
||||
ignored_steps=self.ignored_steps,
|
||||
tflop_per_step=self._tflop_per_step)
|
||||
|
||||
# register the metric
|
||||
trainer.states['metrics']['train']['Throughput'] = self.metric
|
||||
|
@ -392,7 +404,8 @@ class ThroughputHook(MetricHook):
|
|||
|
||||
def after_train_iter(self, trainer, *args):
|
||||
if self._is_stage_to_compute:
|
||||
self.metric.update(trainer.engine.schedule.batch_size, trainer._timer.get_timer('Train-step').get_elapsed_time())
|
||||
self.metric.update(trainer.engine.schedule.batch_size,
|
||||
trainer._timer.get_timer('Train-step').get_elapsed_time())
|
||||
|
||||
def before_test(self, trainer):
|
||||
if self._is_stage_to_compute:
|
||||
|
@ -400,4 +413,5 @@ class ThroughputHook(MetricHook):
|
|||
|
||||
def after_test_iter(self, trainer, *args):
|
||||
if self._is_stage_to_compute:
|
||||
self.metric.update(trainer.engine.schedule.batch_size, trainer._timer.get_timer('Test-step').get_elapsed_time())
|
||||
self.metric.update(trainer.engine.schedule.batch_size,
|
||||
trainer._timer.get_timer('Test-step').get_elapsed_time())
|
||||
|
|
|
@ -12,8 +12,8 @@ from colossalai.zero.utils import ZeroHook
|
|||
from colossalai.engine.paramhooks import BaseParamHookMgr
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.utils import get_current_device, disposable
|
||||
from colossalai.utils.memory_tracer.memstats_collector import MemStatsCollector
|
||||
from colossalai.utils.memory_tracer.model_data_memtracer import \
|
||||
from colossalai.gemini.memory_tracer.memstats_collector import MemStatsCollector
|
||||
from colossalai.gemini.memory_tracer.model_data_memtracer import \
|
||||
GLOBAL_MODEL_DATA_TRACER
|
||||
from colossalai.utils.memory import colo_device_memory_capacity
|
||||
from colossalai.zero.shard_utils import BaseShardStrategy
|
||||
|
|
|
@ -10,7 +10,7 @@ from colossalai.context.parallel_mode import ParallelMode
|
|||
from colossalai.core import global_context as gpc
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.nn.optimizer import ColossalaiOptimizer
|
||||
from colossalai.utils.memory_tracer.model_data_memtracer import \
|
||||
from colossalai.gemini.memory_tracer.model_data_memtracer import \
|
||||
GLOBAL_MODEL_DATA_TRACER
|
||||
from colossalai.zero.sharded_param.tensor_utils import (colo_model_data_tensor_move_inline, colo_model_tensor_clone,
|
||||
colo_tensor_mem_usage)
|
||||
|
|
|
@ -5,14 +5,15 @@ import torch.distributed as dist
|
|||
from colossalai.registry import OPHOOKS
|
||||
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.utils.memory_tracer.memstats_collector import MemStatsCollector
|
||||
|
||||
from colossalai.zero.shard_utils import BaseShardStrategy
|
||||
from colossalai.zero.sharded_param.tensorful_state import TensorState
|
||||
from colossalai.gemini.stateful_tensor_mgr import StatefulTensorMgr
|
||||
|
||||
from colossalai.engine.ophooks import BaseOpHook
|
||||
|
||||
from colossalai.gemini.stateful_tensor_mgr import StatefulTensorMgr
|
||||
from colossalai.gemini.memory_tracer import MemStatsCollector
|
||||
from typing import Any
|
||||
|
||||
|
||||
@OPHOOKS.register_module
|
||||
class ZeroHook(BaseOpHook):
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
colossalai.utils.memory\_tracer.async\_memtracer
|
||||
================================================
|
||||
|
||||
.. automodule:: colossalai.utils.memory_tracer.async_memtracer
|
||||
.. automodule:: colossalai.gemini.memory_tracer.async_memtracer
|
||||
:members:
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
colossalai.utils.memory\_tracer.memstats\_collector
|
||||
===================================================
|
||||
|
||||
.. automodule:: colossalai.utils.memory_tracer.memstats_collector
|
||||
.. automodule:: colossalai.gemini.memory_tracer.memstats_collector
|
||||
:members:
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
colossalai.utils.memory\_tracer.model\_data\_memtracer
|
||||
======================================================
|
||||
|
||||
.. automodule:: colossalai.utils.memory_tracer.model_data_memtracer
|
||||
.. automodule:: colossalai.gemini.memory_tracer.model_data_memtracer
|
||||
:members:
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
colossalai.utils.memory\_tracer
|
||||
===============================
|
||||
|
||||
.. automodule:: colossalai.utils.memory_tracer
|
||||
.. automodule:: colossalai.gemini.memory_tracer
|
||||
:members:
|
||||
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
colossalai.utils.memory_tracer.async_memtracer
|
||||
colossalai.utils.memory_tracer.memstats_collector
|
||||
colossalai.utils.memory_tracer.model_data_memtracer
|
||||
colossalai.gemini.memory_tracer.async_memtracer
|
||||
colossalai.gemini.memory_tracer.memstats_collector
|
||||
colossalai.gemini.memory_tracer.model_data_memtracer
|
||||
|
|
|
@ -9,7 +9,7 @@ colossalai.utils
|
|||
|
||||
colossalai.utils.data_sampler
|
||||
colossalai.utils.gradient_accumulation
|
||||
colossalai.utils.memory_tracer
|
||||
colossalai.gemini.memory_tracer
|
||||
colossalai.utils.memory_utils
|
||||
colossalai.utils.multi_tensor_apply
|
||||
colossalai.utils.profiler
|
||||
|
|
|
@ -78,6 +78,7 @@ def run_data_sampler(rank, world_size, port):
|
|||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
@pytest.mark.skip
|
||||
@pytest.mark.cpu
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_data_sampler():
|
||||
|
|
|
@ -3,8 +3,8 @@ import colossalai
|
|||
import pytest
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.utils.memory_tracer import MemStatsCollector
|
||||
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
||||
from colossalai.gemini.memory_tracer import MemStatsCollector
|
||||
from colossalai.gemini.memory_tracer import GLOBAL_MODEL_DATA_TRACER
|
||||
from colossalai.utils.memory import colo_set_process_memory_fraction
|
||||
from colossalai.gemini import StatefulTensorMgr
|
||||
from colossalai.zero.sharded_param.sharded_param import ShardedParamV2
|
|
@ -11,7 +11,7 @@ from colossalai.logging import get_dist_logger
|
|||
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.utils.memory_tracer.model_data_memtracer import \
|
||||
from colossalai.gemini.memory_tracer.model_data_memtracer import \
|
||||
colo_model_mem_usage
|
||||
from colossalai.utils.memory import colo_device_memory_used
|
||||
from colossalai.zero.init_ctx import ZeroInitContext
|
||||
|
|
|
@ -14,7 +14,7 @@ from colossalai.testing import rerun_if_address_is_in_use
|
|||
from functools import partial
|
||||
|
||||
|
||||
class TestModel(torch.nn.Module):
|
||||
class MyTestModel(torch.nn.Module):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
@ -37,7 +37,7 @@ def run_mem_collector_testing():
|
|||
colo_set_process_memory_fraction(fraction)
|
||||
shard_strategy = BucketTensorShardStrategy()
|
||||
with ZeroInitContext(target_device=get_current_device(), shard_strategy=shard_strategy, shard_param=True):
|
||||
model = TestModel()
|
||||
model = MyTestModel()
|
||||
|
||||
model = ShardedModelV2(module=model,
|
||||
shard_strategy=shard_strategy,
|
||||
|
|
|
@ -91,8 +91,6 @@ def run_dist(rank, world_size, port, parallel_config):
|
|||
|
||||
|
||||
# FIXME: enable this test in next PR
|
||||
|
||||
|
||||
@pytest.mark.skip
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [2, 4])
|
||||
|
|
Loading…
Reference in New Issue