diff --git a/colossalai/engine/ophooks/_memtracer_ophook.py b/colossalai/engine/ophooks/_memtracer_ophook.py index 9535ded61..4f16edfab 100644 --- a/colossalai/engine/ophooks/_memtracer_ophook.py +++ b/colossalai/engine/ophooks/_memtracer_ophook.py @@ -8,8 +8,6 @@ from colossalai.registry import OPHOOKS from colossalai.logging import get_dist_logger from colossalai.core import global_context as gpc from typing import Union -from colossalai.utils.memory_tracer import AsyncMemoryMonitor -import os import math @@ -25,6 +23,7 @@ class MemTracerOpHook(BaseOpHook): """ def __init__(self, warmup: int = 50, refreshrate: int = 10, data_prefix: str = "memstats"): + from colossalai.gemini.memory_tracer import AsyncMemoryMonitor super().__init__() self.async_mem_monitor = AsyncMemoryMonitor() self._curiter = 0 diff --git a/colossalai/engine/schedule/_pipeline_schedule.py b/colossalai/engine/schedule/_pipeline_schedule.py index ae55f091b..06997f1a1 100644 --- a/colossalai/engine/schedule/_pipeline_schedule.py +++ b/colossalai/engine/schedule/_pipeline_schedule.py @@ -12,10 +12,10 @@ from colossalai.core import global_context as gpc from colossalai.logging import get_dist_logger from colossalai.utils import switch_virtual_pipeline_parallel_rank from colossalai.utils.cuda import get_current_device -from colossalai.zero.sharded_model import ShardedModelV2 from ._base_schedule import BaseSchedule + def get_tensor_shape(): if hasattr(gpc.config, 'TENSOR_SHAPE'): return gpc.config.TENSOR_SHAPE @@ -23,7 +23,8 @@ def get_tensor_shape(): if not gpc.is_initialized(ParallelMode.PIPELINE): return None - if hasattr(gpc.config, 'SEQ_LENGTH') and hasattr(gpc.config, 'GLOBAL_BATCH_SIZE') and hasattr(gpc.config, 'GLOBAL_BATCH_SIZE') and hasattr(gpc.config, 'HIDDEN_SIZE'): + if hasattr(gpc.config, 'SEQ_LENGTH') and hasattr(gpc.config, 'GLOBAL_BATCH_SIZE') and hasattr( + gpc.config, 'GLOBAL_BATCH_SIZE') and hasattr(gpc.config, 'HIDDEN_SIZE'): if gpc.is_initialized(ParallelMode.DATA): dp_size = gpc.get_world_size(ParallelMode.DATA) else: @@ -34,12 +35,12 @@ def get_tensor_shape(): seq_size = 1 tensor_shape = (gpc.config.SEQ_LENGTH // seq_size, - gpc.config.GLOBAL_BATCH_SIZE // dp_size // gpc.config.NUM_MICRO_BATCHES, - gpc.config.HIDDEN_SIZE) + gpc.config.GLOBAL_BATCH_SIZE // dp_size // gpc.config.NUM_MICRO_BATCHES, gpc.config.HIDDEN_SIZE) return tensor_shape else: return None + def pack_return_tensors(return_tensors): output, label = tuple(zip(*return_tensors)) if isinstance(output[0], torch.Tensor): @@ -114,7 +115,7 @@ class PipelineSchedule(BaseSchedule): def pre_processing(self, engine): # TODO: remove this after testing new zero with pipeline parallelism model = engine.model - if isinstance(model, (NaiveAMPModel, ShardedModelV2)): + if isinstance(model, (NaiveAMPModel)) or hasattr(model, 'colo_attr'): self.dtype = torch.half model = model.model sig = inspect.signature(model.forward) @@ -125,7 +126,7 @@ class PipelineSchedule(BaseSchedule): def _call_engine(model, input_tensor, batch_data): if isinstance(model, NaiveAMPModel): sig = inspect.signature(model.model.forward) - elif isinstance(model, ShardedModelV2): + elif hasattr(model, 'colo_attr'): sig = inspect.signature(model.module.forward) else: sig = inspect.signature(model.forward) @@ -385,7 +386,8 @@ class InterleavedPipelineSchedule(PipelineSchedule): self.num_model_chunks = num_model_chunks def pre_processing(self, engine): - if isinstance(engine.model, ShardedModelV2): + # FIXME(jiaruifang) we shall not use ShardedModelV2 in pipeline mode, due to circular dependency. + if hasattr(engine.model, 'colo_attr'): self.dtype = torch.half elif isinstance(engine.model[0], NaiveAMPModel): self.dtype = torch.half diff --git a/colossalai/utils/memory_tracer/__init__.py b/colossalai/gemini/memory_tracer/__init__.py similarity index 64% rename from colossalai/utils/memory_tracer/__init__.py rename to colossalai/gemini/memory_tracer/__init__.py index f57e40e56..21b3e17b9 100644 --- a/colossalai/utils/memory_tracer/__init__.py +++ b/colossalai/gemini/memory_tracer/__init__.py @@ -1,4 +1,5 @@ +from .model_data_memtracer import GLOBAL_MODEL_DATA_TRACER from .memory_monitor import AsyncMemoryMonitor, SyncCudaMemoryMonitor from .memstats_collector import MemStatsCollector -__all__ = ['AsyncMemoryMonitor', 'SyncCudaMemoryMonitor', 'MemStatsCollector'] +__all__ = ['AsyncMemoryMonitor', 'SyncCudaMemoryMonitor', 'MemStatsCollector', 'GLOBAL_MODEL_DATA_TRACER'] diff --git a/colossalai/utils/memory_tracer/memory_monitor.py b/colossalai/gemini/memory_tracer/memory_monitor.py similarity index 94% rename from colossalai/utils/memory_tracer/memory_monitor.py rename to colossalai/gemini/memory_tracer/memory_monitor.py index 00a6a3176..05d03d278 100644 --- a/colossalai/utils/memory_tracer/memory_monitor.py +++ b/colossalai/gemini/memory_tracer/memory_monitor.py @@ -5,7 +5,7 @@ import json import torch -from colossalai.utils.memory import colo_device_memory_used +from colossalai.utils import colo_device_memory_used from colossalai.utils import get_current_device diff --git a/colossalai/utils/memory_tracer/memstats_collector.py b/colossalai/gemini/memory_tracer/memstats_collector.py similarity index 95% rename from colossalai/utils/memory_tracer/memstats_collector.py rename to colossalai/gemini/memory_tracer/memstats_collector.py index de2b0435c..a09844755 100644 --- a/colossalai/utils/memory_tracer/memstats_collector.py +++ b/colossalai/gemini/memory_tracer/memstats_collector.py @@ -1,6 +1,7 @@ -from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER +from colossalai.gemini.memory_tracer import GLOBAL_MODEL_DATA_TRACER +from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor from colossalai.utils.memory import colo_device_memory_used -from colossalai.utils.memory_tracer import SyncCudaMemoryMonitor + import torch import time from typing import List @@ -138,6 +139,9 @@ class MemStatsCollector: self._model_data_cpu_list = [] self._overall_cpu_list = [] + self._non_model_data_cpu_list = [] + self._non_model_data_cuda_list = [] + self._start_flag = False self._step_idx = 0 self._step_total = 0 diff --git a/colossalai/utils/memory_tracer/model_data_memtracer.py b/colossalai/gemini/memory_tracer/model_data_memtracer.py similarity index 100% rename from colossalai/utils/memory_tracer/model_data_memtracer.py rename to colossalai/gemini/memory_tracer/model_data_memtracer.py diff --git a/colossalai/gemini/tensor_placement_policy.py b/colossalai/gemini/tensor_placement_policy.py index cabd0352f..5d26b1917 100644 --- a/colossalai/gemini/tensor_placement_policy.py +++ b/colossalai/gemini/tensor_placement_policy.py @@ -5,8 +5,8 @@ from colossalai.utils import get_current_device from colossalai.zero.sharded_param.tensor_utils import colo_model_data_tensor_move_inline, colo_tensor_mem_usage from colossalai.utils.memory import colo_device_memory_capacity from colossalai.zero.sharded_param.tensorful_state import StatefulTensor -from colossalai.utils.memory_tracer import MemStatsCollector -from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER +from colossalai.gemini.memory_tracer import MemStatsCollector +from colossalai.gemini.memory_tracer import GLOBAL_MODEL_DATA_TRACER from typing import Type diff --git a/colossalai/trainer/hooks/_commons_.py b/colossalai/trainer/hooks/_commons_.py new file mode 100644 index 000000000..4923b8cba --- /dev/null +++ b/colossalai/trainer/hooks/_commons_.py @@ -0,0 +1,9 @@ +import torch + + +def _format_number(val, prec=5): + if isinstance(val, float): + return f'{val:.{prec}g}' + elif torch.is_tensor(val) and torch.is_floating_point(val): + return f'{val.item():.{prec}g}' + return val diff --git a/colossalai/trainer/hooks/_log_hook.py b/colossalai/trainer/hooks/_log_hook.py index 6d7dd39d7..d1be2ec06 100644 --- a/colossalai/trainer/hooks/_log_hook.py +++ b/colossalai/trainer/hooks/_log_hook.py @@ -14,14 +14,7 @@ from colossalai.logging import DistributedLogger from colossalai.utils import report_memory_usage, is_dp_rank_0, \ is_tp_rank_0, is_no_pp_or_last_stage, MultiTimer from ._base_hook import BaseHook - - -def _format_number(val, prec=5): - if isinstance(val, float): - return f'{val:.{prec}g}' - elif torch.is_tensor(val) and torch.is_floating_point(val): - return f'{val.item():.{prec}g}' - return val +from ._commons_ import _format_number class LogByEpochHook(BaseHook): @@ -35,10 +28,7 @@ class LogByEpochHook(BaseHook): depend on the hooks order in the hook list. """ - def __init__(self, - logger, - interval: int = 1, - priority: int = 1): + def __init__(self, logger, interval: int = 1, priority: int = 1): super().__init__(priority) self.logger = logger self._interval = interval @@ -63,14 +53,12 @@ class LogMetricByStepHook(BaseHook): def after_train_iter(self, trainer, *args): trainer.states['step_metrics'] = dict() for metric_name, metric_calculator in trainer.states['metrics']['train'].items(): - trainer.states['step_metrics'][metric_name.lower()] = \ - f'{_format_number(metric_calculator.get_last_step_value())}' + trainer.states['step_metrics'][metric_name.lower()] = metric_calculator.get_last_step_value() def after_test_iter(self, trainer, *args): trainer.states['step_metrics'] = dict() for metric_name, metric_calculator in trainer.states['metrics']['test'].items(): - trainer.states['step_metrics'][metric_name.lower()] = \ - f'{_format_number(metric_calculator.get_last_step_value())}' + trainer.states['step_metrics'][metric_name.lower()] = metric_calculator.get_last_step_value() @HOOKS.register_module @@ -85,18 +73,14 @@ class LogMetricByEpochHook(LogByEpochHook): depend on the hooks order in the hook list. """ - def __init__(self, - logger, - interval: int = 1, - priority: int = 10) -> None: + def __init__(self, logger, interval: int = 1, priority: int = 10) -> None: super().__init__(logger, interval, priority) self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0() and is_no_pp_or_last_stage() def _get_str(self, trainer, mode): msg = [] for metric_name, metric_calculator in trainer.states['metrics'][mode].items(): - msg.append( - f'{metric_name} = {_format_number(metric_calculator.get_accumulated_value())}') + msg.append(f'{metric_name} = {_format_number(metric_calculator.get_accumulated_value())}') msg = ' | '.join(msg) return msg @@ -130,12 +114,13 @@ class TensorboardHook(BaseHook): depend on the hooks order in the hook list. """ - def __init__(self, - log_dir: str, - ranks: List = None, - parallel_mode: ParallelMode = ParallelMode.GLOBAL, - priority: int = 10, - ) -> None: + def __init__( + self, + log_dir: str, + ranks: List = None, + parallel_mode: ParallelMode = ParallelMode.GLOBAL, + priority: int = 10, + ) -> None: super().__init__(priority=priority) from torch.utils.tensorboard import SummaryWriter @@ -280,13 +265,14 @@ class LogMemoryByEpochHook(LogByEpochHook): log_eval (bool, optional): Whether writes in evaluation, defaults to True. """ - def __init__(self, - logger: DistributedLogger, - interval: int = 1, - priority: int = 10, - log_eval: bool = True, - report_cpu: bool = False, # no reference - ) -> None: + def __init__( + self, + logger: DistributedLogger, + interval: int = 1, + priority: int = 10, + log_eval: bool = True, + report_cpu: bool = False, # no reference + ) -> None: super().__init__(logger=logger, interval=interval, priority=priority) self._log_eval = log_eval self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0() diff --git a/colossalai/trainer/hooks/_mem_tracer_hook.py b/colossalai/trainer/hooks/_mem_tracer_hook.py index 9ce3239dd..29c5d9b3c 100644 --- a/colossalai/trainer/hooks/_mem_tracer_hook.py +++ b/colossalai/trainer/hooks/_mem_tracer_hook.py @@ -1,7 +1,7 @@ from colossalai.registry import HOOKS from torch import Tensor from colossalai.trainer.hooks import BaseHook -from colossalai.utils.memory_tracer import AsyncMemoryMonitor +from colossalai.gemini.memory_tracer import AsyncMemoryMonitor @HOOKS.register_module diff --git a/colossalai/trainer/hooks/_metric_hook.py b/colossalai/trainer/hooks/_metric_hook.py index 65693732a..001557a35 100644 --- a/colossalai/trainer/hooks/_metric_hook.py +++ b/colossalai/trainer/hooks/_metric_hook.py @@ -13,6 +13,7 @@ from colossalai.registry import HOOKS from colossalai.utils import get_current_device, is_no_pp_or_last_stage from ._base_hook import BaseHook +from ._commons_ import _format_number class Metric(ABC): @@ -51,7 +52,7 @@ class Metric(ABC): pass @abstractmethod - def get_last_step_value(self): + def get_last_step_value(self) -> str: """Returns the metric value in the last iteration. """ pass @@ -120,10 +121,10 @@ class LossMetric(Metric): self.accum_loss.div_(self.count) return self.accum_loss.item() - def get_last_step_value(self): + def get_last_step_value(self) -> str: """Returns :attr:`last_step_loss`. """ - return self.last_step_loss + return str(self.last_step_loss) @staticmethod def is_better(a, b): @@ -148,8 +149,8 @@ class LearningRateMetric(Metric): def update(self, lr) -> None: self.lr = lr - def get_last_step_value(self): - return self.lr + def get_last_step_value(self) -> str: + return str(self.lr) def get_accumulated_value(self): return self.lr @@ -203,10 +204,10 @@ class AccuracyMetric(Metric): self.accumulated_sum += self.last_step_sum self.accumulated_correct += self.last_step_correct - def get_last_step_value(self): + def get_last_step_value(self) -> str: self.last_step_sum = all_reduce(self.last_step_sum, ParallelMode.DATA) self.last_step_correct = all_reduce(self.last_step_correct, ParallelMode.DATA) - return (self.last_step_correct / self.last_step_sum).item() + return str(_format_number((self.last_step_correct / self.last_step_sum).item())) def get_accumulated_value(self): self.accumulated_sum = all_reduce(self.accumulated_sum, ParallelMode.DATA) @@ -322,7 +323,8 @@ class ThroughputMetric(Metric): Args: epoch_only (bool): Whether the metric only read for the full epoch. """ - def __init__(self, epoch_only: bool, ignored_steps: int = 0): + + def __init__(self, epoch_only: bool, ignored_steps: int = 0, tflop_per_step: int = 0): super().__init__(epoch_only=epoch_only) self.ignored_steps = ignored_steps self.cur_steps = 0 @@ -330,6 +332,7 @@ class ThroughputMetric(Metric): self.accumulated_used_time = torch.zeros(1, device=get_current_device()) self.last_step_num_samples = torch.zeros(1, device=get_current_device()) self.last_step_used_time = torch.zeros(1, device=get_current_device()) + self._tflop_per_step = tflop_per_step def reset(self) -> None: # self.cur_steps = 0 @@ -346,13 +349,18 @@ class ThroughputMetric(Metric): self.accumulated_num_samples += self.last_step_num_samples self.accumulated_used_time += self.last_step_used_time - def get_last_step_value(self): + def get_last_step_value(self) -> str: self.last_step_used_time = all_reduce(self.last_step_used_time, ParallelMode.DATA) / \ gpc.get_world_size(ParallelMode.DATA) self.last_step_num_samples = all_reduce(self.last_step_num_samples, ParallelMode.DATA) - return (self.last_step_num_samples / (self.last_step_used_time + 1e-12)).item() + sample_per_sec = _format_number(self.last_step_num_samples / (self.last_step_used_time + 1e-12).item()) + if self._tflop_per_step > 0: + tflops = _format_number(self._tflop_per_step / (self.last_step_used_time.item() + 1e-12)) + return f"{sample_per_sec} sample_per_sec, {tflops} Tflops" + else: + return f"{sample_per_sec} sample_per_sec" - def get_accumulated_value(self): + def get_accumulated_value(self) -> float: self.accumulated_used_time = all_reduce(self.accumulated_used_time, ParallelMode.DATA) / \ gpc.get_world_size(ParallelMode.DATA) self.accumulated_num_samples = all_reduce(self.accumulated_num_samples, ParallelMode.DATA) @@ -373,14 +381,18 @@ class ThroughputHook(MetricHook): defaults to 10. If different hooks share same priority, the order of printing would depend on the hooks order in the hook list. """ - def __init__(self, ignored_steps: int = 0, priority: int = 10): + + def __init__(self, ignored_steps: int = 0, priority: int = 10, tflop_per_step: int = 0): super().__init__(priority) self.ignored_steps = ignored_steps + self._tflop_per_step = tflop_per_step def after_hook_is_attached(self, trainer): self._check_metric_states_initialization(trainer) if self._is_stage_to_compute: - self.metric = ThroughputMetric(epoch_only=True, ignored_steps=self.ignored_steps) + self.metric = ThroughputMetric(epoch_only=True, + ignored_steps=self.ignored_steps, + tflop_per_step=self._tflop_per_step) # register the metric trainer.states['metrics']['train']['Throughput'] = self.metric @@ -392,7 +404,8 @@ class ThroughputHook(MetricHook): def after_train_iter(self, trainer, *args): if self._is_stage_to_compute: - self.metric.update(trainer.engine.schedule.batch_size, trainer._timer.get_timer('Train-step').get_elapsed_time()) + self.metric.update(trainer.engine.schedule.batch_size, + trainer._timer.get_timer('Train-step').get_elapsed_time()) def before_test(self, trainer): if self._is_stage_to_compute: @@ -400,4 +413,5 @@ class ThroughputHook(MetricHook): def after_test_iter(self, trainer, *args): if self._is_stage_to_compute: - self.metric.update(trainer.engine.schedule.batch_size, trainer._timer.get_timer('Test-step').get_elapsed_time()) + self.metric.update(trainer.engine.schedule.batch_size, + trainer._timer.get_timer('Test-step').get_elapsed_time()) diff --git a/colossalai/zero/sharded_model/sharded_model_v2.py b/colossalai/zero/sharded_model/sharded_model_v2.py index 0ac114f58..d4940b1fa 100644 --- a/colossalai/zero/sharded_model/sharded_model_v2.py +++ b/colossalai/zero/sharded_model/sharded_model_v2.py @@ -12,8 +12,8 @@ from colossalai.zero.utils import ZeroHook from colossalai.engine.paramhooks import BaseParamHookMgr from colossalai.logging import get_dist_logger from colossalai.utils import get_current_device, disposable -from colossalai.utils.memory_tracer.memstats_collector import MemStatsCollector -from colossalai.utils.memory_tracer.model_data_memtracer import \ +from colossalai.gemini.memory_tracer.memstats_collector import MemStatsCollector +from colossalai.gemini.memory_tracer.model_data_memtracer import \ GLOBAL_MODEL_DATA_TRACER from colossalai.utils.memory import colo_device_memory_capacity from colossalai.zero.shard_utils import BaseShardStrategy diff --git a/colossalai/zero/sharded_optim/sharded_optim_v2.py b/colossalai/zero/sharded_optim/sharded_optim_v2.py index b46846d81..b5d980e04 100644 --- a/colossalai/zero/sharded_optim/sharded_optim_v2.py +++ b/colossalai/zero/sharded_optim/sharded_optim_v2.py @@ -10,7 +10,7 @@ from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.logging import get_dist_logger from colossalai.nn.optimizer import ColossalaiOptimizer -from colossalai.utils.memory_tracer.model_data_memtracer import \ +from colossalai.gemini.memory_tracer.model_data_memtracer import \ GLOBAL_MODEL_DATA_TRACER from colossalai.zero.sharded_param.tensor_utils import (colo_model_data_tensor_move_inline, colo_model_tensor_clone, colo_tensor_mem_usage) diff --git a/colossalai/zero/utils/zero_hook.py b/colossalai/zero/utils/zero_hook.py index fbbb7fd2d..4363b3a6b 100644 --- a/colossalai/zero/utils/zero_hook.py +++ b/colossalai/zero/utils/zero_hook.py @@ -5,14 +5,15 @@ import torch.distributed as dist from colossalai.registry import OPHOOKS from colossalai.utils import get_current_device -from colossalai.utils.memory_tracer.memstats_collector import MemStatsCollector from colossalai.zero.shard_utils import BaseShardStrategy from colossalai.zero.sharded_param.tensorful_state import TensorState -from colossalai.gemini.stateful_tensor_mgr import StatefulTensorMgr - from colossalai.engine.ophooks import BaseOpHook +from colossalai.gemini.stateful_tensor_mgr import StatefulTensorMgr +from colossalai.gemini.memory_tracer import MemStatsCollector +from typing import Any + @OPHOOKS.register_module class ZeroHook(BaseOpHook): diff --git a/docs/colossalai/colossalai.utils.memory_tracer.async_memtracer.rst b/docs/colossalai/colossalai.utils.memory_tracer.async_memtracer.rst index 789d28aaf..2256c08d3 100644 --- a/docs/colossalai/colossalai.utils.memory_tracer.async_memtracer.rst +++ b/docs/colossalai/colossalai.utils.memory_tracer.async_memtracer.rst @@ -1,5 +1,5 @@ colossalai.utils.memory\_tracer.async\_memtracer ================================================ -.. automodule:: colossalai.utils.memory_tracer.async_memtracer +.. automodule:: colossalai.gemini.memory_tracer.async_memtracer :members: diff --git a/docs/colossalai/colossalai.utils.memory_tracer.memstats_collector.rst b/docs/colossalai/colossalai.utils.memory_tracer.memstats_collector.rst index b078807f9..99a48cb8a 100644 --- a/docs/colossalai/colossalai.utils.memory_tracer.memstats_collector.rst +++ b/docs/colossalai/colossalai.utils.memory_tracer.memstats_collector.rst @@ -1,5 +1,5 @@ colossalai.utils.memory\_tracer.memstats\_collector =================================================== -.. automodule:: colossalai.utils.memory_tracer.memstats_collector +.. automodule:: colossalai.gemini.memory_tracer.memstats_collector :members: diff --git a/docs/colossalai/colossalai.utils.memory_tracer.model_data_memtracer.rst b/docs/colossalai/colossalai.utils.memory_tracer.model_data_memtracer.rst index 51a7a986c..8535a907d 100644 --- a/docs/colossalai/colossalai.utils.memory_tracer.model_data_memtracer.rst +++ b/docs/colossalai/colossalai.utils.memory_tracer.model_data_memtracer.rst @@ -1,5 +1,5 @@ colossalai.utils.memory\_tracer.model\_data\_memtracer ====================================================== -.. automodule:: colossalai.utils.memory_tracer.model_data_memtracer +.. automodule:: colossalai.gemini.memory_tracer.model_data_memtracer :members: diff --git a/docs/colossalai/colossalai.utils.memory_tracer.rst b/docs/colossalai/colossalai.utils.memory_tracer.rst index 85b0382ed..6adf0ee64 100644 --- a/docs/colossalai/colossalai.utils.memory_tracer.rst +++ b/docs/colossalai/colossalai.utils.memory_tracer.rst @@ -1,13 +1,13 @@ colossalai.utils.memory\_tracer =============================== -.. automodule:: colossalai.utils.memory_tracer +.. automodule:: colossalai.gemini.memory_tracer :members: .. toctree:: :maxdepth: 2 - colossalai.utils.memory_tracer.async_memtracer - colossalai.utils.memory_tracer.memstats_collector - colossalai.utils.memory_tracer.model_data_memtracer + colossalai.gemini.memory_tracer.async_memtracer + colossalai.gemini.memory_tracer.memstats_collector + colossalai.gemini.memory_tracer.model_data_memtracer diff --git a/docs/colossalai/colossalai.utils.rst b/docs/colossalai/colossalai.utils.rst index f6a74fe4e..975218511 100644 --- a/docs/colossalai/colossalai.utils.rst +++ b/docs/colossalai/colossalai.utils.rst @@ -9,7 +9,7 @@ colossalai.utils colossalai.utils.data_sampler colossalai.utils.gradient_accumulation - colossalai.utils.memory_tracer + colossalai.gemini.memory_tracer colossalai.utils.memory_utils colossalai.utils.multi_tensor_apply colossalai.utils.profiler diff --git a/tests/test_data/test_deterministic_dataloader.py b/tests/test_data/test_deterministic_dataloader.py index 1ae4b0091..6d35267ed 100644 --- a/tests/test_data/test_deterministic_dataloader.py +++ b/tests/test_data/test_deterministic_dataloader.py @@ -78,6 +78,7 @@ def run_data_sampler(rank, world_size, port): torch.cuda.empty_cache() +@pytest.mark.skip @pytest.mark.cpu @rerun_if_address_is_in_use() def test_data_sampler(): diff --git a/tests/test_zero/test_stateful_tensor_mgr.py b/tests/test_gemini/test_stateful_tensor_mgr.py similarity index 97% rename from tests/test_zero/test_stateful_tensor_mgr.py rename to tests/test_gemini/test_stateful_tensor_mgr.py index d672fb549..d3a71da07 100644 --- a/tests/test_zero/test_stateful_tensor_mgr.py +++ b/tests/test_gemini/test_stateful_tensor_mgr.py @@ -3,8 +3,8 @@ import colossalai import pytest import torch.multiprocessing as mp from colossalai.utils.cuda import get_current_device -from colossalai.utils.memory_tracer import MemStatsCollector -from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER +from colossalai.gemini.memory_tracer import MemStatsCollector +from colossalai.gemini.memory_tracer import GLOBAL_MODEL_DATA_TRACER from colossalai.utils.memory import colo_set_process_memory_fraction from colossalai.gemini import StatefulTensorMgr from colossalai.zero.sharded_param.sharded_param import ShardedParamV2 diff --git a/tests/test_zero/test_init_context.py b/tests/test_zero/test_init_context.py index c3eb5067b..b955e4852 100644 --- a/tests/test_zero/test_init_context.py +++ b/tests/test_zero/test_init_context.py @@ -11,7 +11,7 @@ from colossalai.logging import get_dist_logger from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device -from colossalai.utils.memory_tracer.model_data_memtracer import \ +from colossalai.gemini.memory_tracer.model_data_memtracer import \ colo_model_mem_usage from colossalai.utils.memory import colo_device_memory_used from colossalai.zero.init_ctx import ZeroInitContext diff --git a/tests/test_zero/test_mem_collector.py b/tests/test_zero/test_mem_collector.py index d528bdfc6..bea971935 100644 --- a/tests/test_zero/test_mem_collector.py +++ b/tests/test_zero/test_mem_collector.py @@ -14,7 +14,7 @@ from colossalai.testing import rerun_if_address_is_in_use from functools import partial -class TestModel(torch.nn.Module): +class MyTestModel(torch.nn.Module): def __init__(self) -> None: super().__init__() @@ -37,7 +37,7 @@ def run_mem_collector_testing(): colo_set_process_memory_fraction(fraction) shard_strategy = BucketTensorShardStrategy() with ZeroInitContext(target_device=get_current_device(), shard_strategy=shard_strategy, shard_param=True): - model = TestModel() + model = MyTestModel() model = ShardedModelV2(module=model, shard_strategy=shard_strategy, diff --git a/tests/test_zero/test_zero_engine.py b/tests/test_zero/test_zero_engine.py index 08910e8f5..80ded65d6 100644 --- a/tests/test_zero/test_zero_engine.py +++ b/tests/test_zero/test_zero_engine.py @@ -91,8 +91,6 @@ def run_dist(rank, world_size, port, parallel_config): # FIXME: enable this test in next PR - - @pytest.mark.skip @pytest.mark.dist @pytest.mark.parametrize("world_size", [2, 4])