[zero] initialize a stateful tensor manager (#614)

pull/681/head
Jiarui Fang 2022-04-06 16:18:49 +08:00 committed by GitHub
parent cc236916c6
commit 59bf2dc590
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 93 additions and 3 deletions

View File

@ -1,3 +1,4 @@
from .async_memtracer import AsyncMemoryMonitor
from .memstats_collector import MemStatsCollector
__all__ = ['AsyncMemoryMonitor']
__all__ = ['AsyncMemoryMonitor', 'MemStatsCollector']

View File

@ -11,15 +11,21 @@ class SamplingCounter:
def __init__(self) -> None:
self._samplint_cnt = 0
self._max_sampling_cnt = None
def advance(self):
self._samplint_cnt += 1
def next(self):
assert self._max_sampling_cnt is not None
return (self._samplint_cnt + 1) % self._max_sampling_cnt
@property
def sampling_cnt(self):
return self._samplint_cnt
def reset(self):
self._max_sampling_cnt = self._samplint_cnt
self._samplint_cnt = 0
@ -56,7 +62,7 @@ class MemStatsCollector:
else:
raise TypeError
def model_data_cuda_list(self, device_type: str, unit: str = 'B') -> List[int]:
def model_data_list(self, device_type: str, unit: str = 'B') -> List[int]:
if unit == 'GB':
scale = 1e9
elif unit == 'MB':
@ -75,7 +81,7 @@ class MemStatsCollector:
else:
raise TypeError
def non_model_data_cuda_list(self, device_type: str, unit: str = 'B') -> List[int]:
def non_model_data_list(self, device_type: str, unit: str = 'B') -> List[int]:
"""Non model data stats
"""
if unit == 'GB':
@ -96,6 +102,14 @@ class MemStatsCollector:
else:
raise TypeError
def current_non_model_data(self, device_type: str) -> int:
"""get the non model data of current sampling moment
"""
return self.non_model_data_list(device_type)[self._sampling_cnter.sampling_cnt]
def next_non_model_data(self, device_type: str):
return self.non_model_data_list(device_type)[self._sampling_cnter.next()]
@property
def sampling_time(self):
return [t - self._sampling_time[0] for t in self._sampling_time]

View File

@ -0,0 +1,69 @@
import torch
from colossalai.context.singleton_meta import SingletonMeta
from colossalai.utils.cuda import get_current_device
from colossalai.zero.sharded_param.sharded_param import ShardedParamV2
from colossalai.zero.sharded_param.tensorful_state import StatefulTensor, TensorState
from colossalai.zero.shard_utils.tensor_utils import colo_model_data_tensor_move_inline, colo_tensor_mem_usage
from colossalai.utils.memory_utils.utils import colo_cuda_memory_capacity
from typing import Set
from colossalai.utils.memory_tracer import MemStatsCollector
class StatefulTensorMgr(SingletonMeta):
_stateful_tensor_list: Set[ShardedParamV2] = set()
def register_param(self, param: ShardedParamV2) -> None:
for t in param.get_payload_tensors():
assert isinstance(t, StatefulTensor)
self._stateful_tensor_list.add(t)
def evict_tensors(self) -> None:
pass
def adjust_layout(self, mem_stats_collector: MemStatsCollector) -> None:
""" Adjust the layout of statefuil tensor according to the information provided
by mem_stats_collector, which should belongs to a Sharded Model.
Args:
mem_stats_collector (MemStatsCollector): a collector, usually owned by a Sharded Model.
It contains non-model footprint of a DNN model.
"""
# find stateful tensor in state COMPUTE
move_to_cuda_tensor_list = []
cuda_demand = 0
used_cuda_model_data = 0
hold_cuda_tensor_list = []
for tensor in self._stateful_tensor_list:
if tensor.state == TensorState.FREE:
continue
if tensor.device.type == 'cuda':
used_cuda_model_data += colo_tensor_mem_usage(tensor.payload)[0]
if tensor.state in [TensorState.HOLD, TensorState.HOLD_AFTER_BWD, TensorState.HOLD_AFTER_FWD]:
hold_cuda_tensor_list.append(tensor)
else:
if tensor.state == TensorState.COMPUTE:
move_to_cuda_tensor_list.append(tensor)
cuda_demand += colo_tensor_mem_usage(tensor.payload)[0]
# max non-model-data cuda memory consumption of this sampling moment and the next sampling moment.
max_cuda_non_model_data_per_period = max(mem_stats_collector.current_non_model_data('cuda'),
mem_stats_collector.next_non_model_data('cuda'))
cuda_capacity = colo_cuda_memory_capacity()
cuda_model_data_period = cuda_capacity - max_cuda_non_model_data_per_period
if cuda_model_data_period < used_cuda_model_data + cuda_demand:
# move cuda_model_data_period - cuda_demand - used_cuda_model_data volume of tensor
# Here use a naive eviction strategy.
acc_size = 0
for t in hold_cuda_tensor_list:
if acc_size > cuda_demand:
break
colo_model_data_tensor_move_inline(t, torch.device('cpu'))
t_size = colo_tensor_mem_usage(t)
acc_size += t_size
if acc_size < cuda_demand:
raise RuntimeError("Adjust layout failed! No enough CUDA memory!")
# move COMPUTE tensors to CUDA
for t in move_to_cuda_tensor_list:
colo_model_data_tensor_move_inline(t, get_current_device())

View File

@ -3,6 +3,7 @@ from colossalai.zero.sharded_param import ShardedTensor
from typing import Optional, Tuple
from colossalai.zero.shard_utils.tensor_utils import colo_tensor_mem_usage
from .tensorful_state import StatefulTensor, TensorState
from typing import List
class ShardedParamV2(object):
@ -22,6 +23,11 @@ class ShardedParamV2(object):
if rm_torch_payload:
self.remove_torch_payload()
def get_payload_tensors(self) -> List[StatefulTensor]:
"""returns stateful tensors kept by this class.
"""
return [self._sharded_data_tensor, self.saved_grad]
def remove_torch_payload(self):
self.param.data = torch.empty([], dtype=self.param.dtype, device=self.param.device)