You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_zero/test_shard_param.py

96 lines
3.4 KiB

from copy import deepcopy
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
3 years ago
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
from colossalai.zero.sharded_param import ShardedTensor
from colossalai.zero.sharded_param.sharded_param import ShardedParamV2
from tests.test_zero.common import CONFIG, allclose
from colossalai.gemini.stateful_tensor import StatefulTensor
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def run_shard_tensor_with_strategy(shard_strategy_class, world_size):
t = ShardedTensor(tensor=torch.randn(world_size * 2, 3))
assert list(t.origin_shape) == [world_size * 2, 3]
assert list(t.shape) == [world_size * 2, 3]
shard_strategy = shard_strategy_class()
# test shard strategy
shard_strategy.shard([t])
assert list(t.shape) == [6], f"{list(t.shape)} vs 6"
shard_strategy.gather([t])
assert list(t.shape) == [world_size * 2, 3], f"{list(t.shape)} vs {[world_size * 2, 3]}"
def _run_shard_tensor(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_shard_tensor_with_strategy(world_size=world_size)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 2])
@rerun_if_address_is_in_use()
def test_shard_tensor(world_size):
run_func = partial(_run_shard_tensor, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
def _run_shard_param_v2(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
param = torch.nn.Parameter(torch.randn(2, 3))
param_ref = deepcopy(param)
sparam = ShardedParamV2(param=param)
allclose(sparam.data_payload, param_ref.data)
# Test get memory usage
sparam.saved_grad = StatefulTensor(torch.randn(2, 3))
cuda_mem_use, cpu_mem_use = sparam.get_memory_usage()
assert cpu_mem_use == 2 * 3 * 4 * 2, f"cpu_mem_use: {cpu_mem_use}"
sparam.set_data_none()
assert (param.data.numel() == 0)
cuda_mem_use, cpu_mem_use = sparam.get_memory_usage()
# 4 is size of dummy tensor of param.data
assert cpu_mem_use == 2 * 3 * 4 * 2
sparam.saved_grad = StatefulTensor(torch.randn(2, 3))
sparam.set_data_none()
cuda_mem_use, cpu_mem_use = sparam.get_memory_usage()
assert cpu_mem_use == 2 * 3 * 4 * 2
assert cuda_mem_use == 0
# append a grad to torch param
param.data = sparam.data_payload
param.grad = torch.randn(2, 3)
cuda_mem_use, cpu_mem_use = sparam.get_memory_usage()
assert cpu_mem_use == 2 * 3 * 4 * 2 + 2 * 3 * 4, f"cpu_mem_use {cpu_mem_use}"
assert cuda_mem_use == 0
# reuse torch grad for sparam
sparam.saved_grad = StatefulTensor(param.grad)
cuda_mem_use, cpu_mem_use = sparam.get_memory_usage()
assert cpu_mem_use == 2 * 3 * 4 * 2
assert cuda_mem_use == 0
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 2])
@rerun_if_address_is_in_use()
def test_shard_param_v2(world_size):
run_func = partial(_run_shard_param_v2, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
# test_shard_tensor(2)
test_shard_param_v2(2)