[zero] get memory usage for sharded param (#536)

pull/537/head^2
Jiarui Fang 2022-03-28 15:01:21 +08:00 committed by GitHub
parent 56ad945797
commit 37cb70feec
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 45 additions and 2 deletions

View File

@ -1,7 +1,7 @@
import torch
import torch.distributed as dist
from colossalai.zero.sharded_param import ShardedTensor
from typing import Optional
from typing import Optional, Tuple
class ShardedParamV2(object):
@ -40,3 +40,28 @@ class ShardedParamV2(object):
@property
def param_is_sharded(self):
return self._sharded_data_tensor.is_sharded
def get_memory_usage(self) -> Tuple[int, int]:
"""
get the memory usage of the param, including data and grad
Returns:
Tuple[int, int]: cuda mem usage in Byte, cpu memory usage in Byte
"""
cuda_mem_use, cpu_mem_use = 0, 0
def _update_mem_use(t: Optional[torch.Tensor]):
if t is None:
return
assert isinstance(t, torch.Tensor)
nonlocal cuda_mem_use
nonlocal cpu_mem_use
if t.device.type == 'cpu':
cpu_mem_use += t.numel() * t.element_size()
elif t.device.type == 'cuda':
cuda_mem_use += t.numel() * t.element_size()
_update_mem_use(self.sharded_data_tensor.payload)
_update_mem_use(self.fp16_grad)
_update_mem_use(self.fp32_grad)
return cuda_mem_use, cpu_mem_use

View File

@ -54,6 +54,24 @@ def _run_shard_param_v2(rank, world_size, port):
sparam.remove_torch_payload()
assert (param.data.numel() == 1)
# Test get memory usage
sparam.fp32_grad = torch.randn(2, 3)
cuda_mem_use, cpu_mem_use = sparam.get_memory_usage()
assert cpu_mem_use == 2 * 3 * 4 * 2
sparam.fp16_grad = torch.randn(2, 3).cuda().half()
cuda_mem_use, cpu_mem_use = sparam.get_memory_usage()
assert cpu_mem_use == 2 * 3 * 4 * 2
assert cuda_mem_use == 2 * 3 * 2
sparam.fp16_grad = None
sparam.fp32_grad = torch.randn(2, 3)
sparam.remove_torch_payload()
cuda_mem_use, cpu_mem_use = sparam.get_memory_usage()
assert cpu_mem_use == 2 * 3 * 4 * 2
assert cuda_mem_use == 0
print(f'cuda_mem_use {cuda_mem_use} cpu_mem_use {cpu_mem_use}')
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [1, 2])
@ -64,5 +82,5 @@ def test_shard_param_v2(world_size):
if __name__ == '__main__':
test_shard_tensor(2)
# test_shard_tensor(2)
test_shard_param_v2(2)