|
|
|
@ -1,7 +1,7 @@
|
|
|
|
|
import torch
|
|
|
|
|
import torch.distributed as dist
|
|
|
|
|
from colossalai.zero.sharded_param import ShardedTensor
|
|
|
|
|
from typing import Optional
|
|
|
|
|
from typing import Optional, Tuple
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ShardedParamV2(object):
|
|
|
|
@ -40,3 +40,28 @@ class ShardedParamV2(object):
|
|
|
|
|
@property
|
|
|
|
|
def param_is_sharded(self):
|
|
|
|
|
return self._sharded_data_tensor.is_sharded
|
|
|
|
|
|
|
|
|
|
def get_memory_usage(self) -> Tuple[int, int]:
|
|
|
|
|
"""
|
|
|
|
|
get the memory usage of the param, including data and grad
|
|
|
|
|
Returns:
|
|
|
|
|
Tuple[int, int]: cuda mem usage in Byte, cpu memory usage in Byte
|
|
|
|
|
"""
|
|
|
|
|
cuda_mem_use, cpu_mem_use = 0, 0
|
|
|
|
|
|
|
|
|
|
def _update_mem_use(t: Optional[torch.Tensor]):
|
|
|
|
|
if t is None:
|
|
|
|
|
return
|
|
|
|
|
assert isinstance(t, torch.Tensor)
|
|
|
|
|
nonlocal cuda_mem_use
|
|
|
|
|
nonlocal cpu_mem_use
|
|
|
|
|
if t.device.type == 'cpu':
|
|
|
|
|
cpu_mem_use += t.numel() * t.element_size()
|
|
|
|
|
elif t.device.type == 'cuda':
|
|
|
|
|
cuda_mem_use += t.numel() * t.element_size()
|
|
|
|
|
|
|
|
|
|
_update_mem_use(self.sharded_data_tensor.payload)
|
|
|
|
|
_update_mem_use(self.fp16_grad)
|
|
|
|
|
_update_mem_use(self.fp32_grad)
|
|
|
|
|
|
|
|
|
|
return cuda_mem_use, cpu_mem_use
|
|
|
|
|