mirror of https://github.com/hpcaitech/ColossalAI
[zero] a shard strategy in granularity of tensor (#307)
parent
80364c7686
commit
74f77e314b
|
@ -0,0 +1,4 @@
|
|||
from colossalai.zero.shard_utils.base_shard_strategy import BaseShardStrategy
|
||||
from colossalai.zero.shard_utils.tensor_shard_strategy import TensorShardStrategy
|
||||
|
||||
__all__ = ['BaseShardStrategy', 'TensorShardStrategy']
|
|
@ -0,0 +1,27 @@
|
|||
from abc import ABC, abstractmethod
|
||||
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
|
||||
import torch.distributed as dist
|
||||
from typing import List, Optional
|
||||
|
||||
|
||||
class BaseShardStrategy(ABC):
|
||||
|
||||
def __init__(self, process_group: Optional[dist.ProcessGroup] = None) -> None:
|
||||
self.process_group = process_group
|
||||
self.world_size = dist.get_world_size(self.process_group)
|
||||
self.local_rank = dist.get_rank(self.process_group)
|
||||
super().__init__()
|
||||
|
||||
@abstractmethod
|
||||
def shard(self, tensor_list: List[ShardedTensor]):
|
||||
r"""
|
||||
sharded the memory of tensor on multiple processes.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def gather(self, tensor_list: List[ShardedTensor]):
|
||||
r"""
|
||||
duplicate tensor payload on each processes.
|
||||
"""
|
||||
pass
|
|
@ -0,0 +1,18 @@
|
|||
from colossalai.zero.shard_utils import BaseShardStrategy
|
||||
import torch.distributed as dist
|
||||
from typing import List, Optional
|
||||
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
|
||||
|
||||
|
||||
class TensorShardStrategy(BaseShardStrategy):
|
||||
|
||||
def __init__(self, process_group: Optional[dist.ProcessGroup] = None) -> None:
|
||||
super().__init__(process_group)
|
||||
|
||||
def shard(self, tensor_list: List[ShardedTensor]):
|
||||
for t in tensor_list:
|
||||
t.shard()
|
||||
|
||||
def gather(self, tensor_list: List[ShardedTensor]):
|
||||
for t in tensor_list:
|
||||
t.gather()
|
|
@ -7,6 +7,8 @@ import colossalai
|
|||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
from colossalai.zero.shard_utils import TensorShardStrategy
|
||||
from colossalai.zero.sharded_param import ShardedTensor, ShardedParam
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.logging import get_dist_logger, disable_existing_loggers
|
||||
|
@ -18,19 +20,14 @@ def run_shard_tensor(rank, world_size, port):
|
|||
t = ShardedTensor(tensor=torch.randn(world_size * 2, 3))
|
||||
|
||||
assert list(t.shape) == [world_size * 2, 3]
|
||||
t.shard()
|
||||
# The shape is flattened
|
||||
assert list(t.shape) == [6]
|
||||
# Do nothing
|
||||
t.shard()
|
||||
assert list(t.shape) == [6]
|
||||
shard_strategy = TensorShardStrategy(process_group=None)
|
||||
|
||||
t.gather()
|
||||
# test shard strategy
|
||||
shard_strategy.shard([t])
|
||||
assert list(t.shape) == [6]
|
||||
shard_strategy.gather([t])
|
||||
assert list(t.shape) == [world_size * 2, 3]
|
||||
|
||||
t.payload = torch.zeros(world_size * 2, 3)
|
||||
assert torch.sum(t.payload).cpu() == 0
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
def test_shard_tensor():
|
||||
|
|
Loading…
Reference in New Issue