[zero] polish shard strategy (#310)

* init shard param from shape tuple

* add more unitest for shard param

* add set_payload method for ShardedParam

* [zero] add shareded tensor class

* polish code

* add shard stratgy

* move shard and gather logic to shard strategy from shard tensor.

* polish code
pull/394/head
Jiarui Fang 2022-03-04 15:35:07 +08:00 committed by Frank Lee
parent 3092317b80
commit c9e7d9582d
3 changed files with 56 additions and 35 deletions

View File

@ -1,7 +1,11 @@
from colossalai.zero.shard_utils import BaseShardStrategy
import torch
import torch.distributed as dist
from typing import List, Optional
from colossalai.zero.shard_utils import BaseShardStrategy
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
from colossalai.zero.sharded_model._zero3_utils import get_shard
class TensorShardStrategy(BaseShardStrategy):
@ -11,8 +15,35 @@ class TensorShardStrategy(BaseShardStrategy):
def shard(self, tensor_list: List[ShardedTensor]):
for t in tensor_list:
t.shard()
self._shard_tensor(t)
def gather(self, tensor_list: List[ShardedTensor]):
for t in tensor_list:
t.gather()
self._gather_tensor(t)
def _shard_tensor(self, t: ShardedTensor):
if t.is_sharded:
return
sharded_payload, _ = get_shard(t.payload, self.local_rank, self.world_size)
t.reset_payload(sharded_payload)
t.is_sharded = True
def _gather_tensor(self, t: ShardedTensor):
if not t.is_sharded:
return
buffer_list = []
payload_numel = t.payload.numel()
for i in range(self.world_size):
if i == self.local_rank:
buffer_list.append(t.payload.cuda())
else:
buffer_list.append(torch.zeros(payload_numel).cuda())
torch.distributed.all_gather(buffer_list,
buffer_list[self.local_rank],
group=self.process_group,
async_op=False)
gathered_payload = torch.narrow(torch.cat(buffer_list), 0, 0, t.origin_numel).reshape(t.origin_shape)
t.reset_payload(gathered_payload)
t.is_sharded = False

View File

@ -1,6 +1,5 @@
import torch
import torch.distributed as dist
from colossalai.zero.sharded_model._zero3_utils import get_shard
from typing import Optional
@ -21,47 +20,38 @@ class ShardedTensor(object):
self._origin_numel = tensor.numel()
self._origin_dtype = tensor.dtype
@property
def origin_numel(self):
return self._origin_numel
@property
def origin_shape(self):
return self._origin_shape
@property
def is_sharded(self):
return self._is_sharded
@is_sharded.setter
def is_sharded(self, flag: bool):
self._is_sharded = flag
@property
def payload(self):
return self._payload
@payload.setter
def payload(self, tensor):
def copy_payload(self, tensor):
self._payload.copy_(tensor)
def reset_payload(self, tensor):
del self._payload
self._payload = tensor
@property
def dtype(self):
assert self._payload.dtype == self._origin_dtype
return self._origin_dtype
@property
def shape(self):
return self._payload.shape
def shard(self):
if self._is_sharded:
return
self._payload, _ = get_shard(self._payload, self.local_rank, self.world_size)
self._is_sharded = True
def gather(self):
if not self._is_sharded:
return
buffer_list = []
payload_numel = self._payload.numel()
for i in range(self.world_size):
if i == self.local_rank:
buffer_list.append(self._payload.cuda())
else:
buffer_list.append(torch.zeros(payload_numel).cuda())
torch.distributed.all_gather(buffer_list,
buffer_list[self.local_rank],
group=self.process_group,
async_op=False)
self._payload = torch.narrow(torch.cat(buffer_list), 0, 0, self._origin_numel).view(self._origin_shape)
self._is_sharded = False

View File

@ -7,7 +7,6 @@ import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.zero.shard_utils import TensorShardStrategy
from colossalai.zero.sharded_param import ShardedTensor, ShardedParam
from colossalai.utils import free_port
@ -18,15 +17,16 @@ from tests.test_zero_data_parallel.common import Net, CONFIG
def run_shard_tensor(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
t = ShardedTensor(tensor=torch.randn(world_size * 2, 3))
assert list(t.origin_shape) == [world_size * 2, 3]
assert list(t.shape) == [world_size * 2, 3]
shard_strategy = TensorShardStrategy(process_group=None)
# test shard strategy
shard_strategy.shard([t])
assert list(t.shape) == [6]
assert list(t.shape) == [6], f"{list(t.shape)} vs 6"
shard_strategy.gather([t])
assert list(t.shape) == [world_size * 2, 3]
assert list(t.shape) == [world_size * 2, 3], f"{list(t.shape)} vs {[world_size * 2, 3]}"
@pytest.mark.dist