2022-10-18 08:31:22 +00:00
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
2022-11-30 02:40:31 +00:00
|
|
|
from torch.testing import assert_close
|
2022-10-18 08:31:22 +00:00
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.amp import convert_to_apex_amp
|
|
|
|
from colossalai.nn.optimizer import HybridAdam
|
2023-04-06 06:51:35 +00:00
|
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
2022-10-18 08:31:22 +00:00
|
|
|
from colossalai.utils.cuda import get_current_device
|
2023-08-24 01:29:25 +00:00
|
|
|
from colossalai.zero import GeminiDDP, GeminiOptimizer
|
|
|
|
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
2022-11-29 09:13:10 +00:00
|
|
|
from tests.components_to_test import run_fwd_bwd
|
2022-10-18 08:31:22 +00:00
|
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
2023-08-24 01:29:25 +00:00
|
|
|
from tests.test_tensor.common_utils import set_seed
|
|
|
|
|
|
|
|
PLACEMENT_CONFIGS = [
|
|
|
|
{
|
|
|
|
'placement_policy': 'static',
|
|
|
|
'shard_param_frac': 0.0,
|
|
|
|
'offload_optim_frac': 0.0
|
|
|
|
}, # zero2
|
|
|
|
{
|
|
|
|
'placement_policy': 'static',
|
|
|
|
'shard_param_frac': 0.0,
|
|
|
|
'offload_optim_frac': 1.0
|
|
|
|
}, # zero2-offload
|
|
|
|
{
|
|
|
|
'placement_policy': 'static',
|
|
|
|
'shard_param_frac': 0.0,
|
|
|
|
'offload_optim_frac': 0.5
|
|
|
|
}, # zero2-offload-half
|
|
|
|
{
|
|
|
|
'placement_policy': 'static',
|
|
|
|
'shard_param_frac': 1.0
|
|
|
|
}, # zero3
|
|
|
|
{
|
|
|
|
'placement_policy': 'static',
|
|
|
|
'shard_param_frac': 0.5
|
|
|
|
}, # zero3-half
|
|
|
|
{
|
|
|
|
'placement_policy': 'static',
|
|
|
|
'shard_param_frac': 1.0,
|
|
|
|
'offload_optim_frac': 1.0,
|
|
|
|
'offload_param_frac': 1.0
|
|
|
|
}, # zero3-offload-all
|
|
|
|
{
|
|
|
|
'placement_policy': 'auto'
|
|
|
|
}
|
|
|
|
]
|
2022-10-18 08:31:22 +00:00
|
|
|
|
2022-11-30 09:06:10 +00:00
|
|
|
# this model is large enough to slice to chunks
|
|
|
|
TEST_MODELS = ['gpt2']
|
|
|
|
# these models are too small, all parameters in these models are compacted into one chunk
|
2022-12-26 09:35:36 +00:00
|
|
|
EXAMPLE_MODELS = ['albert', 'beit', 'bert', 'hanging_param_model', 'nested_model', 'repeated_computed_layers']
|
2022-11-30 09:06:10 +00:00
|
|
|
|
2023-06-05 07:58:31 +00:00
|
|
|
# bfloat16 cannot represent them exactly
|
|
|
|
BF16_IGNORED_KEYS = [
|
|
|
|
'albert.embeddings.word_embeddings.weight',
|
|
|
|
'albert.embeddings.position_embeddings.weight',
|
|
|
|
'masked_bias',
|
|
|
|
]
|
2022-10-18 08:31:22 +00:00
|
|
|
|
2023-06-05 07:58:31 +00:00
|
|
|
|
2023-08-24 01:29:25 +00:00
|
|
|
def check_param(model: GeminiDDP, torch_model: torch.nn.Module, dtype: torch.dtype):
|
2023-06-05 07:58:31 +00:00
|
|
|
zero_dict = model.state_dict(only_rank_0=False, dtype=dtype)
|
2022-10-18 08:31:22 +00:00
|
|
|
torch_dict = torch_model.state_dict()
|
|
|
|
|
|
|
|
for key, value in torch_dict.items():
|
|
|
|
# key is 'module.model.PARAMETER', so we truncate it
|
|
|
|
key = key[7:]
|
|
|
|
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key)
|
2023-06-05 07:58:31 +00:00
|
|
|
temp_zero_value = zero_dict[key].to(device=value.device)
|
|
|
|
if dtype is torch.bfloat16 and any(k in key for k in BF16_IGNORED_KEYS):
|
|
|
|
continue
|
|
|
|
rtol, atol = 1e-3, 4e-3
|
|
|
|
if dtype is torch.bfloat16:
|
|
|
|
rtol, atol = 4e-3, 8e-3
|
2022-10-18 08:31:22 +00:00
|
|
|
# debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value)))
|
2023-06-05 07:58:31 +00:00
|
|
|
assert_close(value.float(),
|
|
|
|
temp_zero_value.float(),
|
|
|
|
rtol=rtol,
|
|
|
|
atol=atol,
|
|
|
|
msg=lambda s: s + f'\n{key}\n{temp_zero_value.dtype}')
|
2022-10-18 08:31:22 +00:00
|
|
|
|
|
|
|
|
2023-08-24 01:29:25 +00:00
|
|
|
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
2022-11-29 09:13:10 +00:00
|
|
|
@parameterize('model_name', TEST_MODELS)
|
2023-06-05 07:58:31 +00:00
|
|
|
@parameterize('mixed_precision', [torch.half, torch.bfloat16])
|
2023-08-24 01:29:25 +00:00
|
|
|
def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dtype):
|
2022-10-18 08:31:22 +00:00
|
|
|
set_seed(42)
|
2022-11-29 09:13:10 +00:00
|
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
2022-10-18 08:31:22 +00:00
|
|
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
|
|
|
|
2022-11-30 02:40:31 +00:00
|
|
|
torch_model = model_builder().cuda()
|
|
|
|
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=128)
|
|
|
|
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
|
|
|
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
|
|
|
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
|
|
|
|
2023-08-24 01:29:25 +00:00
|
|
|
model = model_builder().cuda()
|
2022-11-30 06:53:41 +00:00
|
|
|
|
2022-10-18 08:31:22 +00:00
|
|
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
2022-11-30 02:40:31 +00:00
|
|
|
p.data.copy_(torch_p.data)
|
2022-10-18 08:31:22 +00:00
|
|
|
|
|
|
|
world_size = torch.distributed.get_world_size()
|
2023-06-25 05:34:15 +00:00
|
|
|
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
2022-10-18 08:31:22 +00:00
|
|
|
config_dict[world_size]['chunk_size'] = 5000
|
|
|
|
config_dict[world_size]['keep_gathered'] = False
|
2023-08-24 01:29:25 +00:00
|
|
|
model = GeminiDDP(model, config_dict, **placement_config, mixed_precision=mixed_precision)
|
2022-10-18 08:31:22 +00:00
|
|
|
|
|
|
|
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
2023-08-24 01:29:25 +00:00
|
|
|
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=128)
|
2022-10-18 08:31:22 +00:00
|
|
|
|
|
|
|
model.eval()
|
|
|
|
torch_model.eval()
|
|
|
|
|
|
|
|
set_seed(dist.get_rank() * 3 + 128)
|
2023-06-05 07:58:31 +00:00
|
|
|
rtol, atol = 1e-4, 1e-5
|
2022-11-24 08:51:45 +00:00
|
|
|
for i, (input_ids, label) in enumerate(train_dataloader):
|
2022-10-18 08:31:22 +00:00
|
|
|
if i > 2:
|
|
|
|
break
|
2022-11-30 02:40:31 +00:00
|
|
|
input_ids, label = input_ids.cuda(), label.cuda()
|
2022-11-29 09:13:10 +00:00
|
|
|
zero_optim.zero_grad()
|
|
|
|
torch_optim.zero_grad()
|
|
|
|
|
2022-11-30 02:40:31 +00:00
|
|
|
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
|
|
|
|
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
|
2023-06-05 07:58:31 +00:00
|
|
|
assert_close(torch_loss, loss, rtol=rtol, atol=atol)
|
2022-10-18 08:31:22 +00:00
|
|
|
|
|
|
|
zero_optim.step()
|
|
|
|
torch_optim.step()
|
|
|
|
|
2023-06-05 07:58:31 +00:00
|
|
|
check_param(model, torch_model, mixed_precision)
|
2022-10-18 08:31:22 +00:00
|
|
|
|
|
|
|
|
2023-08-24 01:29:25 +00:00
|
|
|
@parameterize('placement_config', PLACEMENT_CONFIGS)
|
2022-11-30 09:06:10 +00:00
|
|
|
@parameterize('model_name', EXAMPLE_MODELS)
|
2023-06-05 07:58:31 +00:00
|
|
|
@parameterize('mixed_precision', [torch.half, torch.bfloat16])
|
2023-08-24 01:29:25 +00:00
|
|
|
def exam_tiny_example(placement_config, model_name: str, mixed_precision: torch.dtype):
|
2022-11-30 02:40:31 +00:00
|
|
|
set_seed(2008)
|
2022-11-29 09:13:10 +00:00
|
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
2022-11-02 08:11:34 +00:00
|
|
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
|
|
|
|
2022-11-30 02:40:31 +00:00
|
|
|
torch_model = model_builder().cuda()
|
|
|
|
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=2)
|
|
|
|
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
|
|
|
|
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
|
|
|
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
|
|
|
|
2023-08-24 01:29:25 +00:00
|
|
|
model = model_builder().cuda()
|
2022-11-30 06:53:41 +00:00
|
|
|
|
2022-11-02 08:11:34 +00:00
|
|
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
2022-11-30 02:40:31 +00:00
|
|
|
p.data.copy_(torch_p.data)
|
2022-11-02 08:11:34 +00:00
|
|
|
|
2023-08-24 01:29:25 +00:00
|
|
|
model = GeminiDDP(model,
|
|
|
|
chunk_init_device=get_current_device(),
|
|
|
|
search_range_m=1,
|
|
|
|
pin_memory=True,
|
|
|
|
mixed_precision=mixed_precision,
|
|
|
|
**placement_config)
|
2022-11-02 08:11:34 +00:00
|
|
|
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
2023-08-24 01:29:25 +00:00
|
|
|
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=2)
|
2022-11-02 08:11:34 +00:00
|
|
|
|
|
|
|
model.eval()
|
|
|
|
torch_model.eval()
|
|
|
|
|
|
|
|
set_seed(dist.get_rank() * 3 + 128)
|
2023-06-05 07:58:31 +00:00
|
|
|
rtol, atol = 1.5e-6, 2e-5
|
|
|
|
if mixed_precision is torch.bfloat16:
|
|
|
|
rtol, atol = 2e-3, 2e-3
|
2022-11-24 08:51:45 +00:00
|
|
|
for i, (input_ids, label) in enumerate(train_dataloader):
|
2022-11-02 08:11:34 +00:00
|
|
|
if i > 2:
|
|
|
|
break
|
|
|
|
|
2022-11-30 02:40:31 +00:00
|
|
|
input_ids = input_ids.cuda()
|
|
|
|
label = label.cuda()
|
|
|
|
|
2022-11-29 09:13:10 +00:00
|
|
|
zero_optim.zero_grad()
|
|
|
|
torch_optim.zero_grad()
|
|
|
|
|
2022-11-30 02:40:31 +00:00
|
|
|
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
|
|
|
|
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
|
2023-06-05 07:58:31 +00:00
|
|
|
assert_close(torch_loss, loss, rtol=rtol, atol=atol) # atol should be 2e-5 for torch lower than 1.12
|
2022-11-02 08:11:34 +00:00
|
|
|
|
|
|
|
zero_optim.step()
|
|
|
|
torch_optim.step()
|
|
|
|
|
2023-06-05 07:58:31 +00:00
|
|
|
check_param(model, torch_model, mixed_precision)
|
2022-11-02 08:11:34 +00:00
|
|
|
|
|
|
|
|
2022-10-18 08:31:22 +00:00
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
config = {}
|
|
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
2022-11-29 09:13:10 +00:00
|
|
|
exam_model_step()
|
2022-11-02 08:11:34 +00:00
|
|
|
exam_tiny_example()
|
2022-10-18 08:31:22 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
@pytest.mark.parametrize('world_size', [1, 4])
|
|
|
|
@rerun_if_address_is_in_use()
|
2022-11-29 09:13:10 +00:00
|
|
|
def test_optim(world_size):
|
2023-04-06 06:51:35 +00:00
|
|
|
spawn(run_dist, world_size)
|
2022-10-18 08:31:22 +00:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2022-11-30 02:40:31 +00:00
|
|
|
test_optim(1)
|