import pytest import torch import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.amp import convert_to_apex_amp from colossalai.nn.optimizer import HybridAdam from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.utils.cuda import get_current_device from colossalai.zero import GeminiDDP, GeminiOptimizer from colossalai.zero.gemini.chunk import search_chunk_configuration from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import set_seed PLACEMENT_CONFIGS = [ { 'placement_policy': 'static', 'shard_param_frac': 0.0, 'offload_optim_frac': 0.0 }, # zero2 { 'placement_policy': 'static', 'shard_param_frac': 0.0, 'offload_optim_frac': 1.0 }, # zero2-offload { 'placement_policy': 'static', 'shard_param_frac': 0.0, 'offload_optim_frac': 0.5 }, # zero2-offload-half { 'placement_policy': 'static', 'shard_param_frac': 1.0 }, # zero3 { 'placement_policy': 'static', 'shard_param_frac': 0.5 }, # zero3-half { 'placement_policy': 'static', 'shard_param_frac': 1.0, 'offload_optim_frac': 1.0, 'offload_param_frac': 1.0 }, # zero3-offload-all { 'placement_policy': 'auto' } ] # this model is large enough to slice to chunks TEST_MODELS = ['gpt2'] # these models are too small, all parameters in these models are compacted into one chunk EXAMPLE_MODELS = ['albert', 'beit', 'bert', 'hanging_param_model', 'nested_model', 'repeated_computed_layers'] # bfloat16 cannot represent them exactly BF16_IGNORED_KEYS = [ 'albert.embeddings.word_embeddings.weight', 'albert.embeddings.position_embeddings.weight', 'masked_bias', ] def check_param(model: GeminiDDP, torch_model: torch.nn.Module, dtype: torch.dtype): zero_dict = model.state_dict(only_rank_0=False, dtype=dtype) torch_dict = torch_model.state_dict() for key, value in torch_dict.items(): # key is 'module.model.PARAMETER', so we truncate it key = key[7:] assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device) if dtype is torch.bfloat16 and any(k in key for k in BF16_IGNORED_KEYS): continue rtol, atol = 1e-3, 4e-3 if dtype is torch.bfloat16: rtol, atol = 4e-3, 8e-3 # debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value))) assert_close(value.float(), temp_zero_value.float(), rtol=rtol, atol=atol, msg=lambda s: s + f'\n{key}\n{temp_zero_value.dtype}') @parameterize('placement_config', PLACEMENT_CONFIGS) @parameterize('model_name', TEST_MODELS) @parameterize('mixed_precision', [torch.half, torch.bfloat16]) def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dtype): set_seed(42) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() torch_model = model_builder().cuda() amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=128) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) model = model_builder().cuda() for torch_p, p in zip(torch_model.parameters(), model.parameters()): p.data.copy_(torch_p.data) world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = False model = GeminiDDP(model, config_dict, **placement_config, mixed_precision=mixed_precision) optimizer = HybridAdam(model.parameters(), lr=1e-3) zero_optim = GeminiOptimizer(optimizer, model, initial_scale=128) model.eval() torch_model.eval() set_seed(dist.get_rank() * 3 + 128) rtol, atol = 1e-4, 1e-5 for i, (input_ids, label) in enumerate(train_dataloader): if i > 2: break input_ids, label = input_ids.cuda(), label.cuda() zero_optim.zero_grad() torch_optim.zero_grad() torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim) loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim) assert_close(torch_loss, loss, rtol=rtol, atol=atol) zero_optim.step() torch_optim.step() check_param(model, torch_model, mixed_precision) @parameterize('placement_config', PLACEMENT_CONFIGS) @parameterize('model_name', EXAMPLE_MODELS) @parameterize('mixed_precision', [torch.half, torch.bfloat16]) def exam_tiny_example(placement_config, model_name: str, mixed_precision: torch.dtype): set_seed(2008) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() torch_model = model_builder().cuda() amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=2) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) model = model_builder().cuda() for torch_p, p in zip(torch_model.parameters(), model.parameters()): p.data.copy_(torch_p.data) model = GeminiDDP(model, chunk_init_device=get_current_device(), search_range_m=1, pin_memory=True, mixed_precision=mixed_precision, **placement_config) optimizer = HybridAdam(model.parameters(), lr=1e-3) zero_optim = GeminiOptimizer(optimizer, model, initial_scale=2) model.eval() torch_model.eval() set_seed(dist.get_rank() * 3 + 128) rtol, atol = 1.5e-6, 2e-5 if mixed_precision is torch.bfloat16: rtol, atol = 2e-3, 2e-3 for i, (input_ids, label) in enumerate(train_dataloader): if i > 2: break input_ids = input_ids.cuda() label = label.cuda() zero_optim.zero_grad() torch_optim.zero_grad() torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim) loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim) assert_close(torch_loss, loss, rtol=rtol, atol=atol) # atol should be 2e-5 for torch lower than 1.12 zero_optim.step() torch_optim.step() check_param(model, torch_model, mixed_precision) def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_model_step() exam_tiny_example() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_optim(world_size): spawn(run_dist, world_size) if __name__ == '__main__': test_optim(1)