You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_zero/test_gemini/test_optim.py

182 lines
7.2 KiB

import pytest
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing import assert_close
import colossalai
from colossalai.amp import convert_to_apex_amp
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils.cuda import get_current_device
from colossalai.zero import ColoInitContext, ZeroDDP, ZeroOptimizer, post_process_colo_init_ctx
from colossalai.zero.gemini.chunk import ChunkManager, init_chunk_manager, search_chunk_configuration
from colossalai.zero.gemini.gemini_mgr import GeminiManager
from tests.components_to_test import run_fwd_bwd
from tests.components_to_test.registry import non_distributed_component_funcs
from tests.test_tensor.common_utils import debug_print, set_seed
# this model is large enough to slice to chunks
TEST_MODELS = ['gpt2']
# these models are too small, all parameters in these models are compacted into one chunk
EXAMPLE_MODELS = ['albert', 'beit', 'bert', 'hanging_param_model', 'nested_model', 'repeated_computed_layers']
# bfloat16 cannot represent them exactly
BF16_IGNORED_KEYS = [
'albert.embeddings.word_embeddings.weight',
'albert.embeddings.position_embeddings.weight',
'masked_bias',
]
def check_param(model: ZeroDDP, torch_model: torch.nn.Module, dtype: torch.dtype):
zero_dict = model.state_dict(only_rank_0=False, dtype=dtype)
torch_dict = torch_model.state_dict()
for key, value in torch_dict.items():
# key is 'module.model.PARAMETER', so we truncate it
key = key[7:]
assert key in zero_dict, "{} not in ZeRO dictionary.".format(key)
temp_zero_value = zero_dict[key].to(device=value.device)
if dtype is torch.bfloat16 and any(k in key for k in BF16_IGNORED_KEYS):
continue
rtol, atol = 1e-3, 4e-3
if dtype is torch.bfloat16:
rtol, atol = 4e-3, 8e-3
# debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value)))
assert_close(value.float(),
temp_zero_value.float(),
rtol=rtol,
atol=atol,
msg=lambda s: s + f'\n{key}\n{temp_zero_value.dtype}')
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
@parameterize('model_name', TEST_MODELS)
@parameterize('mixed_precision', [torch.half, torch.bfloat16])
def exam_model_step(placement_policy, model_name: str, mixed_precision: torch.dtype):
set_seed(42)
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
torch_model = model_builder().cuda()
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=128)
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
init_dev = get_current_device()
with ColoInitContext(device=init_dev):
model = model_builder()
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
p.data.copy_(torch_p.data)
world_size = torch.distributed.get_world_size()
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
config_dict[world_size]['chunk_size'] = 5000
config_dict[world_size]['keep_gathered'] = False
if placement_policy != 'cuda':
init_device = torch.device('cpu')
else:
init_device = None
chunk_manager = ChunkManager(config_dict, init_device=init_device)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
model = ZeroDDP(model, gemini_manager, pin_memory=True, mixed_precision=mixed_precision)
optimizer = HybridAdam(model.parameters(), lr=1e-3)
zero_optim = ZeroOptimizer(optimizer, model, initial_scale=128)
model.eval()
torch_model.eval()
set_seed(dist.get_rank() * 3 + 128)
rtol, atol = 1e-4, 1e-5
for i, (input_ids, label) in enumerate(train_dataloader):
if i > 2:
break
input_ids, label = input_ids.cuda(), label.cuda()
zero_optim.zero_grad()
torch_optim.zero_grad()
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
assert_close(torch_loss, loss, rtol=rtol, atol=atol)
zero_optim.step()
torch_optim.step()
check_param(model, torch_model, mixed_precision)
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
@parameterize('model_name', EXAMPLE_MODELS)
@parameterize('mixed_precision', [torch.half, torch.bfloat16])
def exam_tiny_example(placement_policy, model_name: str, mixed_precision: torch.dtype):
set_seed(2008)
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
torch_model = model_builder().cuda()
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=2)
torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3)
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
init_dev = get_current_device()
with ColoInitContext(device=init_dev):
model = model_builder()
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
p.data.copy_(torch_p.data)
chunk_manager = init_chunk_manager(model=model, init_device=get_current_device(), search_range_m=1)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
model = ZeroDDP(model, gemini_manager, pin_memory=True, mixed_precision=mixed_precision)
optimizer = HybridAdam(model.parameters(), lr=1e-3)
zero_optim = ZeroOptimizer(optimizer, model, initial_scale=2)
model.eval()
torch_model.eval()
set_seed(dist.get_rank() * 3 + 128)
rtol, atol = 1.5e-6, 2e-5
if mixed_precision is torch.bfloat16:
rtol, atol = 2e-3, 2e-3
for i, (input_ids, label) in enumerate(train_dataloader):
if i > 2:
break
input_ids = input_ids.cuda()
label = label.cuda()
zero_optim.zero_grad()
torch_optim.zero_grad()
torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim)
loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim)
assert_close(torch_loss, loss, rtol=rtol, atol=atol) # atol should be 2e-5 for torch lower than 1.12
zero_optim.step()
torch_optim.step()
check_param(model, torch_model, mixed_precision)
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
exam_model_step()
exam_tiny_example()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_optim(world_size):
spawn(run_dist, world_size)
if __name__ == '__main__':
test_optim(1)