2022-10-20 04:06:25 +00:00
|
|
|
import builtins
|
|
|
|
import operator
|
2022-10-18 02:44:58 +00:00
|
|
|
from ast import NodeTransformer
|
2022-10-20 04:06:25 +00:00
|
|
|
from copy import deepcopy
|
2022-10-14 02:14:07 +00:00
|
|
|
from typing import List
|
2022-10-20 04:06:25 +00:00
|
|
|
|
|
|
|
import torch
|
2022-10-14 02:14:07 +00:00
|
|
|
from torch.fx import symbolic_trace
|
|
|
|
from torch.fx.node import Node
|
2022-10-20 04:06:25 +00:00
|
|
|
|
|
|
|
from colossalai.device.device_mesh import DeviceMesh
|
2022-10-14 02:14:07 +00:00
|
|
|
from colossalai.fx.passes.split_module import split_module
|
|
|
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
|
|
|
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
|
|
|
|
2022-10-18 02:44:58 +00:00
|
|
|
shape_consistency_manager = ShapeConsistencyManager()
|
2022-10-14 02:14:07 +00:00
|
|
|
|
2022-10-18 02:44:58 +00:00
|
|
|
|
|
|
|
class ConsistencyApply(torch.autograd.Function):
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def forward(ctx, node, origin_dict, input_dict, node_index, user_node_index):
|
|
|
|
ctx.origin_sharding_spec = origin_dict[node_index]
|
|
|
|
ctx.target_sharding_spec = input_dict[node_index][user_node_index]
|
|
|
|
return shape_consistency_manager.apply_for_autoparallel_runtime(node, ctx.origin_sharding_spec,
|
|
|
|
ctx.target_sharding_spec)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def backward(ctx, node_grad):
|
|
|
|
return shape_consistency_manager.apply_for_autoparallel_runtime(
|
|
|
|
node_grad, ctx.target_sharding_spec, ctx.origin_sharding_spec), None, None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
def runtime_apply_for_leaf_node(node, origin_dict, input_dict, node_index, user_node_index):
|
|
|
|
return ConsistencyApply.apply(node, origin_dict, input_dict, node_index, user_node_index)
|
|
|
|
|
|
|
|
|
|
|
|
def runtime_apply(node, origin_dict, input_dict, node_index, user_node_index):
|
|
|
|
origin_sharding_spec = origin_dict[node_index]
|
|
|
|
target_sharding_spec = input_dict[node_index][user_node_index]
|
|
|
|
return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec)
|
2022-10-14 02:14:07 +00:00
|
|
|
|
|
|
|
|
|
|
|
def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh):
|
|
|
|
mod_graph = gm.graph
|
|
|
|
nodes = tuple(mod_graph.nodes)
|
|
|
|
|
|
|
|
# the dict to get origin sharding spec of node
|
|
|
|
origin_node_sharding_spec_dict = {}
|
|
|
|
for node_index, (node, strategy_index) in enumerate(zip(nodes, solution)):
|
|
|
|
strategies_vector = node.strategies_vector
|
|
|
|
setattr(node, 'best_strategy', strategies_vector[strategy_index])
|
|
|
|
setattr(node, 'sharding_spec', strategies_vector[strategy_index].get_sharding_spec_by_name(str(node)))
|
|
|
|
origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].get_sharding_spec_by_name(
|
|
|
|
str(node))
|
|
|
|
|
|
|
|
# apply the sharding spec of parameters
|
|
|
|
for node in nodes:
|
|
|
|
if node.op == 'call_module':
|
|
|
|
target_module = node.graph.owning_module.get_submodule(node.target)
|
|
|
|
for name, param in target_module.named_parameters():
|
|
|
|
origin_sharding_spec = ShardingSpec(device_mesh, param.shape, {})
|
|
|
|
setattr(param, 'sharding_spec', origin_sharding_spec)
|
2022-10-17 05:37:38 +00:00
|
|
|
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
|
2022-10-18 02:44:58 +00:00
|
|
|
shape_consistency_manager.apply(param, target_sharding_spec)
|
2022-10-17 05:37:38 +00:00
|
|
|
|
|
|
|
for name, buffer in target_module.named_buffers():
|
|
|
|
origin_sharding_spec = ShardingSpec(device_mesh, buffer.shape, {})
|
|
|
|
setattr(buffer, 'sharding_spec', origin_sharding_spec)
|
|
|
|
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
|
2022-10-18 02:44:58 +00:00
|
|
|
shape_consistency_manager.apply(buffer, target_sharding_spec)
|
2022-10-14 02:14:07 +00:00
|
|
|
|
|
|
|
# the dict to get input sharding specs of user node
|
|
|
|
sharding_spec_convert_dict = {}
|
|
|
|
for index, node in enumerate(nodes):
|
|
|
|
target_sharding_specs = []
|
|
|
|
for user_node in node.strategies_vector.successor_nodes:
|
|
|
|
target_sharding_spec = user_node.best_strategy.get_sharding_spec_by_name(str(node.name))
|
|
|
|
target_sharding_specs.append(target_sharding_spec)
|
|
|
|
sharding_spec_convert_dict[index] = target_sharding_specs
|
|
|
|
|
|
|
|
# add above dicts into graph
|
|
|
|
for node in nodes:
|
|
|
|
if node.op != 'placeholder':
|
|
|
|
with mod_graph.inserting_before(node):
|
|
|
|
input_specs_node = mod_graph.create_node('placeholder', target='sharding_spec_convert_dict')
|
|
|
|
origin_specs_node = mod_graph.create_node('placeholder', target='origin_node_sharding_spec_dict')
|
|
|
|
break
|
|
|
|
|
|
|
|
return sharding_spec_convert_dict, origin_node_sharding_spec_dict
|
|
|
|
|
|
|
|
|
|
|
|
def shape_consistency_pass(gm: torch.fx.GraphModule):
|
|
|
|
mod_graph = gm.graph
|
|
|
|
nodes = tuple(mod_graph.nodes)
|
|
|
|
input_dict_node = None
|
|
|
|
origin_dict_node = None
|
|
|
|
|
|
|
|
# mapping the node into the origin graph index
|
|
|
|
node_to_index_dict = {}
|
|
|
|
index = 0
|
|
|
|
for node in nodes:
|
|
|
|
if node.target == 'sharding_spec_convert_dict':
|
|
|
|
input_dict_node = node
|
|
|
|
continue
|
|
|
|
if node.target == 'origin_node_sharding_spec_dict':
|
|
|
|
origin_dict_node = node
|
|
|
|
continue
|
|
|
|
if not hasattr(node, 'best_strategy'):
|
|
|
|
continue
|
|
|
|
node_to_index_dict[node] = index
|
|
|
|
index += 1
|
|
|
|
assert input_dict_node is not None
|
|
|
|
|
|
|
|
# add shape consistency apply function into graph
|
|
|
|
for node in nodes:
|
2022-10-18 02:44:58 +00:00
|
|
|
if not hasattr(node, 'best_strategy') or node.op == 'output':
|
2022-10-14 02:14:07 +00:00
|
|
|
continue
|
|
|
|
|
|
|
|
for user_node in node.strategies_vector.successor_nodes:
|
2022-10-18 02:44:58 +00:00
|
|
|
user_node_index = user_node.strategies_vector.predecessor_nodes.index(node)
|
|
|
|
if user_node.op != "output":
|
|
|
|
with mod_graph.inserting_before(user_node):
|
|
|
|
shape_consistency_node = mod_graph.create_node('call_function',
|
|
|
|
runtime_apply,
|
|
|
|
args=(node, origin_dict_node, input_dict_node,
|
|
|
|
node_to_index_dict[node], user_node_index))
|
|
|
|
else:
|
|
|
|
# we need to call an autograd.Function for leaf node
|
|
|
|
with mod_graph.inserting_before(user_node):
|
|
|
|
shape_consistency_node = mod_graph.create_node('call_function',
|
|
|
|
runtime_apply_for_leaf_node,
|
|
|
|
args=(node, origin_dict_node, input_dict_node,
|
|
|
|
node_to_index_dict[node], user_node_index))
|
|
|
|
|
|
|
|
origin_index_args = user_node.args.index(node)
|
|
|
|
new_args = list(user_node.args)
|
|
|
|
new_args[origin_index_args] = shape_consistency_node
|
|
|
|
user_node.args = new_args
|
2022-10-14 02:14:07 +00:00
|
|
|
|
|
|
|
return gm
|