import builtins import operator from ast import NodeTransformer from copy import deepcopy from typing import List import torch from torch.fx import symbolic_trace from torch.fx.node import Node from colossalai.device.device_mesh import DeviceMesh from colossalai.fx.passes.split_module import split_module from colossalai.tensor.shape_consistency import ShapeConsistencyManager from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec shape_consistency_manager = ShapeConsistencyManager() class ConsistencyApply(torch.autograd.Function): @staticmethod def forward(ctx, node, origin_dict, input_dict, node_index, user_node_index): ctx.origin_sharding_spec = origin_dict[node_index] ctx.target_sharding_spec = input_dict[node_index][user_node_index] return shape_consistency_manager.apply_for_autoparallel_runtime(node, ctx.origin_sharding_spec, ctx.target_sharding_spec) @staticmethod def backward(ctx, node_grad): return shape_consistency_manager.apply_for_autoparallel_runtime( node_grad, ctx.target_sharding_spec, ctx.origin_sharding_spec), None, None, None, None def runtime_apply_for_leaf_node(node, origin_dict, input_dict, node_index, user_node_index): return ConsistencyApply.apply(node, origin_dict, input_dict, node_index, user_node_index) def runtime_apply(node, origin_dict, input_dict, node_index, user_node_index): origin_sharding_spec = origin_dict[node_index] target_sharding_spec = input_dict[node_index][user_node_index] return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec) def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh): mod_graph = gm.graph nodes = tuple(mod_graph.nodes) # the dict to get origin sharding spec of node origin_node_sharding_spec_dict = {} for node_index, (node, strategy_index) in enumerate(zip(nodes, solution)): strategies_vector = node.strategies_vector setattr(node, 'best_strategy', strategies_vector[strategy_index]) setattr(node, 'sharding_spec', strategies_vector[strategy_index].get_sharding_spec_by_name(str(node))) origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].get_sharding_spec_by_name( str(node)) # apply the sharding spec of parameters for node in nodes: if node.op == 'call_module': target_module = node.graph.owning_module.get_submodule(node.target) for name, param in target_module.named_parameters(): origin_sharding_spec = ShardingSpec(device_mesh, param.shape, {}) setattr(param, 'sharding_spec', origin_sharding_spec) target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name) shape_consistency_manager.apply(param, target_sharding_spec) for name, buffer in target_module.named_buffers(): origin_sharding_spec = ShardingSpec(device_mesh, buffer.shape, {}) setattr(buffer, 'sharding_spec', origin_sharding_spec) target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name) shape_consistency_manager.apply(buffer, target_sharding_spec) # the dict to get input sharding specs of user node sharding_spec_convert_dict = {} for index, node in enumerate(nodes): target_sharding_specs = [] for user_node in node.strategies_vector.successor_nodes: target_sharding_spec = user_node.best_strategy.get_sharding_spec_by_name(str(node.name)) target_sharding_specs.append(target_sharding_spec) sharding_spec_convert_dict[index] = target_sharding_specs # add above dicts into graph for node in nodes: if node.op != 'placeholder': with mod_graph.inserting_before(node): input_specs_node = mod_graph.create_node('placeholder', target='sharding_spec_convert_dict') origin_specs_node = mod_graph.create_node('placeholder', target='origin_node_sharding_spec_dict') break return sharding_spec_convert_dict, origin_node_sharding_spec_dict def shape_consistency_pass(gm: torch.fx.GraphModule): mod_graph = gm.graph nodes = tuple(mod_graph.nodes) input_dict_node = None origin_dict_node = None # mapping the node into the origin graph index node_to_index_dict = {} index = 0 for node in nodes: if node.target == 'sharding_spec_convert_dict': input_dict_node = node continue if node.target == 'origin_node_sharding_spec_dict': origin_dict_node = node continue if not hasattr(node, 'best_strategy'): continue node_to_index_dict[node] = index index += 1 assert input_dict_node is not None # add shape consistency apply function into graph for node in nodes: if not hasattr(node, 'best_strategy') or node.op == 'output': continue for user_node in node.strategies_vector.successor_nodes: user_node_index = user_node.strategies_vector.predecessor_nodes.index(node) if user_node.op != "output": with mod_graph.inserting_before(user_node): shape_consistency_node = mod_graph.create_node('call_function', runtime_apply, args=(node, origin_dict_node, input_dict_node, node_to_index_dict[node], user_node_index)) else: # we need to call an autograd.Function for leaf node with mod_graph.inserting_before(user_node): shape_consistency_node = mod_graph.create_node('call_function', runtime_apply_for_leaf_node, args=(node, origin_dict_node, input_dict_node, node_to_index_dict[node], user_node_index)) origin_index_args = user_node.args.index(node) new_args = list(user_node.args) new_args[origin_index_args] = shape_consistency_node user_node.args = new_args return gm