[autoparallel] runtime_backward_apply (#1720)

pull/1724/head
YuliangLiu0306 2022-10-18 10:44:58 +08:00 committed by GitHub
parent 393f594051
commit 51b89d2202
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 56 additions and 27 deletions

View File

@ -1,3 +1,4 @@
from ast import NodeTransformer
import torch
from typing import List
from torch.fx import symbolic_trace
@ -10,10 +11,32 @@ import builtins
import operator
from copy import deepcopy
shape_consistency_manager = ShapeConsistencyManager()
def apply(*args, **kwargs):
shape_consistency_manager = ShapeConsistencyManager()
return shape_consistency_manager.apply(*args, **kwargs)
class ConsistencyApply(torch.autograd.Function):
@staticmethod
def forward(ctx, node, origin_dict, input_dict, node_index, user_node_index):
ctx.origin_sharding_spec = origin_dict[node_index]
ctx.target_sharding_spec = input_dict[node_index][user_node_index]
return shape_consistency_manager.apply_for_autoparallel_runtime(node, ctx.origin_sharding_spec,
ctx.target_sharding_spec)
@staticmethod
def backward(ctx, node_grad):
return shape_consistency_manager.apply_for_autoparallel_runtime(
node_grad, ctx.target_sharding_spec, ctx.origin_sharding_spec), None, None, None, None
def runtime_apply_for_leaf_node(node, origin_dict, input_dict, node_index, user_node_index):
return ConsistencyApply.apply(node, origin_dict, input_dict, node_index, user_node_index)
def runtime_apply(node, origin_dict, input_dict, node_index, user_node_index):
origin_sharding_spec = origin_dict[node_index]
target_sharding_spec = input_dict[node_index][user_node_index]
return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec)
def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh):
@ -37,21 +60,19 @@ def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], de
origin_sharding_spec = ShardingSpec(device_mesh, param.shape, {})
setattr(param, 'sharding_spec', origin_sharding_spec)
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
apply(param, target_sharding_spec)
shape_consistency_manager.apply(param, target_sharding_spec)
for name, buffer in target_module.named_buffers():
origin_sharding_spec = ShardingSpec(device_mesh, buffer.shape, {})
setattr(buffer, 'sharding_spec', origin_sharding_spec)
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
apply(buffer, target_sharding_spec)
shape_consistency_manager.apply(buffer, target_sharding_spec)
# the dict to get input sharding specs of user node
sharding_spec_convert_dict = {}
for index, node in enumerate(nodes):
target_sharding_specs = []
for user_node in node.strategies_vector.successor_nodes:
# node_index = user_node.strategies_vector.predecessor_nodes.index(node)
# target_sharding_spec = user_node.best_strategy.input_shardings[node_index]
target_sharding_spec = user_node.best_strategy.get_sharding_spec_by_name(str(node.name))
target_sharding_specs.append(target_sharding_spec)
sharding_spec_convert_dict[index] = target_sharding_specs
@ -91,28 +112,28 @@ def shape_consistency_pass(gm: torch.fx.GraphModule):
# add shape consistency apply function into graph
for node in nodes:
if not hasattr(node, 'best_strategy'):
if not hasattr(node, 'best_strategy') or node.op == 'output':
continue
with mod_graph.inserting_after(node):
origin_spec_node = mod_graph.create_node('call_function',
operator.getitem,
args=(origin_dict_node, node_to_index_dict[node]))
with mod_graph.inserting_after(origin_spec_node):
set_sharding_spec_node = mod_graph.create_node('call_function',
builtins.setattr,
args=(node, 'sharding_spec', origin_spec_node))
for user_node in node.strategies_vector.successor_nodes:
node_index = user_node.strategies_vector.predecessor_nodes.index(node)
with mod_graph.inserting_before(user_node):
input_specs_node = mod_graph.create_node('call_function',
operator.getitem,
args=(input_dict_node, node_to_index_dict[node]))
with mod_graph.inserting_before(user_node):
sharding_spec_node = mod_graph.create_node('call_function',
operator.getitem,
args=(input_specs_node, node_index))
with mod_graph.inserting_before(user_node):
shape_consistency_node = mod_graph.create_node('call_function', apply, args=(node, sharding_spec_node))
user_node_index = user_node.strategies_vector.predecessor_nodes.index(node)
if user_node.op != "output":
with mod_graph.inserting_before(user_node):
shape_consistency_node = mod_graph.create_node('call_function',
runtime_apply,
args=(node, origin_dict_node, input_dict_node,
node_to_index_dict[node], user_node_index))
else:
# we need to call an autograd.Function for leaf node
with mod_graph.inserting_before(user_node):
shape_consistency_node = mod_graph.create_node('call_function',
runtime_apply_for_leaf_node,
args=(node, origin_dict_node, input_dict_node,
node_to_index_dict[node], user_node_index))
origin_index_args = user_node.args.index(node)
new_args = list(user_node.args)
new_args[origin_index_args] = shape_consistency_node
user_node.args = new_args
return gm

View File

@ -498,3 +498,11 @@ class ShapeConsistencyManager(metaclass=SingletonMeta):
for comm_spec in comm_action_sequence:
comm_spec.covert_spec_to_action(tensor_with_sharding_spec)
tensor_with_sharding_spec.sharding_spec = target_spec
return tensor_with_sharding_spec
def apply_for_autoparallel_runtime(self, tensor, source_spec, target_spec):
_, comm_action_sequence, _ = self.shape_consistency(source_spec, target_spec)
for comm_spec in comm_action_sequence:
comm_spec.covert_spec_to_action(tensor)
tensor.sharding_spec = target_spec
return tensor