ColossalAI/colossalai/fx/passes/experimental/adding_shape_consistency_pa...

140 lines
6.4 KiB
Python
Raw Normal View History

from ast import NodeTransformer
import torch
from typing import List
from torch.fx import symbolic_trace
from torch.fx.node import Node
from colossalai.fx.passes.split_module import split_module
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.device.device_mesh import DeviceMesh
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
import builtins
import operator
from copy import deepcopy
shape_consistency_manager = ShapeConsistencyManager()
class ConsistencyApply(torch.autograd.Function):
@staticmethod
def forward(ctx, node, origin_dict, input_dict, node_index, user_node_index):
ctx.origin_sharding_spec = origin_dict[node_index]
ctx.target_sharding_spec = input_dict[node_index][user_node_index]
return shape_consistency_manager.apply_for_autoparallel_runtime(node, ctx.origin_sharding_spec,
ctx.target_sharding_spec)
@staticmethod
def backward(ctx, node_grad):
return shape_consistency_manager.apply_for_autoparallel_runtime(
node_grad, ctx.target_sharding_spec, ctx.origin_sharding_spec), None, None, None, None
def runtime_apply_for_leaf_node(node, origin_dict, input_dict, node_index, user_node_index):
return ConsistencyApply.apply(node, origin_dict, input_dict, node_index, user_node_index)
def runtime_apply(node, origin_dict, input_dict, node_index, user_node_index):
origin_sharding_spec = origin_dict[node_index]
target_sharding_spec = input_dict[node_index][user_node_index]
return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec)
def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh):
mod_graph = gm.graph
nodes = tuple(mod_graph.nodes)
# the dict to get origin sharding spec of node
origin_node_sharding_spec_dict = {}
for node_index, (node, strategy_index) in enumerate(zip(nodes, solution)):
strategies_vector = node.strategies_vector
setattr(node, 'best_strategy', strategies_vector[strategy_index])
setattr(node, 'sharding_spec', strategies_vector[strategy_index].get_sharding_spec_by_name(str(node)))
origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].get_sharding_spec_by_name(
str(node))
# apply the sharding spec of parameters
for node in nodes:
if node.op == 'call_module':
target_module = node.graph.owning_module.get_submodule(node.target)
for name, param in target_module.named_parameters():
origin_sharding_spec = ShardingSpec(device_mesh, param.shape, {})
setattr(param, 'sharding_spec', origin_sharding_spec)
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
shape_consistency_manager.apply(param, target_sharding_spec)
for name, buffer in target_module.named_buffers():
origin_sharding_spec = ShardingSpec(device_mesh, buffer.shape, {})
setattr(buffer, 'sharding_spec', origin_sharding_spec)
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
shape_consistency_manager.apply(buffer, target_sharding_spec)
# the dict to get input sharding specs of user node
sharding_spec_convert_dict = {}
for index, node in enumerate(nodes):
target_sharding_specs = []
for user_node in node.strategies_vector.successor_nodes:
target_sharding_spec = user_node.best_strategy.get_sharding_spec_by_name(str(node.name))
target_sharding_specs.append(target_sharding_spec)
sharding_spec_convert_dict[index] = target_sharding_specs
# add above dicts into graph
for node in nodes:
if node.op != 'placeholder':
with mod_graph.inserting_before(node):
input_specs_node = mod_graph.create_node('placeholder', target='sharding_spec_convert_dict')
origin_specs_node = mod_graph.create_node('placeholder', target='origin_node_sharding_spec_dict')
break
return sharding_spec_convert_dict, origin_node_sharding_spec_dict
def shape_consistency_pass(gm: torch.fx.GraphModule):
mod_graph = gm.graph
nodes = tuple(mod_graph.nodes)
input_dict_node = None
origin_dict_node = None
# mapping the node into the origin graph index
node_to_index_dict = {}
index = 0
for node in nodes:
if node.target == 'sharding_spec_convert_dict':
input_dict_node = node
continue
if node.target == 'origin_node_sharding_spec_dict':
origin_dict_node = node
continue
if not hasattr(node, 'best_strategy'):
continue
node_to_index_dict[node] = index
index += 1
assert input_dict_node is not None
# add shape consistency apply function into graph
for node in nodes:
if not hasattr(node, 'best_strategy') or node.op == 'output':
continue
for user_node in node.strategies_vector.successor_nodes:
user_node_index = user_node.strategies_vector.predecessor_nodes.index(node)
if user_node.op != "output":
with mod_graph.inserting_before(user_node):
shape_consistency_node = mod_graph.create_node('call_function',
runtime_apply,
args=(node, origin_dict_node, input_dict_node,
node_to_index_dict[node], user_node_index))
else:
# we need to call an autograd.Function for leaf node
with mod_graph.inserting_before(user_node):
shape_consistency_node = mod_graph.create_node('call_function',
runtime_apply_for_leaf_node,
args=(node, origin_dict_node, input_dict_node,
node_to_index_dict[node], user_node_index))
origin_index_args = user_node.args.index(node)
new_args = list(user_node.args)
new_args[origin_index_args] = shape_consistency_node
user_node.args = new_args
return gm