[zero bubble] support zero (#6080)
* fp8 operators for compressed communication
cast_to_fp8, cast_from_fp8, all_reduce_fp8
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix typo
* fix scaling algorithm in FP8 casting
* support fp8 communication in pipeline parallelism
* add fp8_communication flag in the script
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* shardformer fp8
* fix rebase
* remove all to all
* fix shardformer fp8 communication training degradation
* [fp8] support all-gather flat tensor (#5932)
* [fp8] add fp8 comm for low level zero
* [test] add zero fp8 test case
* [Feature] llama shardformer fp8 support (#5938)
* add llama shardformer fp8
* Llama Shardformer Parity
* fix typo
* fix all reduce
* fix pytest failure
* fix reduce op and move function to fp8.py
* fix typo
* [FP8] rebase main (#5963)
* add SimPO
* fix dataloader
* remove debug code
* add orpo
* fix style
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix torch colossalai version
* update transformers version
* [shardformer] DeepseekMoE support (#5871)
* [Feature] deepseek moe expert parallel implement
* [misc] fix typo, remove redundant file (#5867)
* [misc] fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] deepseek support & unit test
* [misc] remove debug code & useless print
* [misc] fix typos (#5872)
* [Feature] remove modeling file, use auto config. (#5884)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [Deepseek] remove redundant code (#5888)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [Feature/deepseek] resolve comment. (#5889)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [misc] mv module replacement into if branch
* [misc] add some warning message and modify some code in unit test
* [misc] fix typos
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)
* Diffusion Model Inference support
* Stable Diffusion 3 Support
* pixartalpha support
* [HotFix] CI,import,requirements-test for #5838 (#5892)
* [Hot Fix] CI,import,requirements-test
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] Enable PP + SP for llama (#5868)
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use a one cross entropy func for all shardformer models
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)
* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint
* fix style
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix eval
* hotfix citation
* [zero] support all-gather overlap (#5898)
* [zero] support all-gather overlap
* [zero] add overlap all-gather flag
* [misc] fix typo
* [zero] update api
* fix orpo cross entropy loss
* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)
* Remove unnecessary calls to deepcopy
* Build DimSpec's difference dict only once
This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.
* Fix documentation of DimSpec's difference method
* [ShardFormer] fix qwen2 sp (#5903)
* [compatibility] support torch 2.2 (#5875)
* Support Pytorch 2.2.2
* keep build_on_pr file and update .compatibility
* fix object_to_tensor usage when torch>=2.3.0 (#5820)
* [misc] support torch2.3 (#5893)
* [misc] support torch2.3
* [devops] update compatibility ci
* [devops] update compatibility ci
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] remove debug
* [devops] remove debug
* [release] update version (#5912)
* [plugin] support all-gather overlap for hybrid parallel (#5919)
* [plugin] fixed all-gather overlap support for hybrid parallel
* add kto
* fix style, add kto data sample
* [Examples] Add lazy init to OPT and GPT examples (#5924)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [ColossalChat] Hotfix for ColossalChat (#5910)
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* fix ddp issue
* add Qwen 1.5 32B
* refactor tokenization
* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)
* cannot access local variable 'default_conversation' where it is not associated with a value
set default value for 'default_conversation'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix test data
* refactor evaluation
* remove real data path
* remove real data path
* Add n_fused as an input from native_module (#5894)
* [FIX BUG] convert env param to int in (#5934)
* [Hotfix] Fix ZeRO typo #5936
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)
* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix style
* fix style
* fix style
* [shardformer] hotfix attn mask (#5945)
* [shardformer] hotfix attn mask (#5947)
* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)
* Distrifusion Support source
* comp comm overlap optimization
* sd3 benchmark
* pixart distrifusion bug fix
* sd3 bug fix and benchmark
* generation bug fix
* naming fix
* add docstring, fix counter and shape error
* add reference
* readme and requirement
* [zero] hotfix update master params (#5951)
* [release] update version (#5952)
* [Chat] Fix lora (#5946)
* fix merging
* remove filepath
* fix style
* Update README.md (#5958)
* [hotfix] Remove unused plan section (#5957)
* remove readme
* fix readme
* update
* [test] add mixtral for sequence classification
* [test] add mixtral transformer test
* [moe] fix plugin
* [test] mixtra pp shard test
* [chore] handle non member group
* [zero] solve hang
* [test] pass mixtral shardformer test
* [moe] implement transit between non moe tp and ep
* [zero] solve hang
* [misc] solve booster hang by rename the variable
* solve hang when parallel mode = pp + dp
* [moe] implement submesh initialization
* [moe] add mixtral dp grad scaling when not all experts are activated
* [chore] manually revert unintended commit
* [chore] trivial fix
* [chore] arg pass & remove drop token
* [test] add mixtral modelling test
* [moe] implement tp
* [moe] test deepseek
* [moe] clean legacy code
* [Feature] MoE Ulysses Support (#5918)
* moe sp support
* moe sp bug solve
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [chore] minor fix
* [moe] init moe plugin comm setting with sp
* moe sp + ep bug fix
* [moe] finalize test (no pp)
* [moe] full test for deepseek and mixtral (pp + sp to fix)
* [chore] minor fix after rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [chore] solve moe ckpt test failure and some other arg pass failure
* [moe] remove ops
* [test] fix test: test_zero1_2
* [bug] fix: somehow logger hangs the program
* [moe] deepseek moe sp support
* [test] add check
* [deepseek] replace attn (a workaround for bug in transformers)
* [misc] skip redunant test
* [misc] remove debug/print code
* [moe] refactor mesh assignment
* Revert "[moe] implement submesh initialization"
This reverts commit 2f9bce6686d1415a83d5726dc5ff02222c742582.
* [chore] change moe_pg_mesh to private
* [misc] remove incompatible test config
* [misc] fix ci failure: change default value to false in moe plugin
* [misc] remove useless condition
* [chore] docstring
* [moe] remove force_overlap_comm flag and add warning instead
* [doc] add MoeHybridParallelPlugin docstring
* [moe] solve dp axis issue
* [chore] remove redundant test case, print string & reduce test tokens
* [feat] Dist Loader for Eval (#5950)
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tp error
* remove unused parameters
* remove unused
* update inference
* update docs
* update inference
---------
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [lora] lora support hybrid parallel plugin (#5956)
* lora support hybrid plugin
* fix
* fix
* fix
* fix
* fp8 operators for compressed communication
cast_to_fp8, cast_from_fp8, all_reduce_fp8
* fix scaling algorithm in FP8 casting
* support fp8 communication in pipeline parallelism
* add fp8_communication flag in the script
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* shardformer fp8
* fix rebase
* remove all to all
* fix shardformer fp8 communication training degradation
* [fp8] support all-gather flat tensor (#5932)
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* Update low_level_optim.py
---------
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>
* [fp8]support all2all fp8 (#5953)
* support all2all fp8
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [fp8] add fp8 linear (#5967)
* [fp8] add fp8 linear
* [test] fix fp8 linear test condition
* [test] fix fp8 linear test condition
* [test] fix fp8 linear test condition
* [fp8] support fp8 amp for hybrid parallel plugin (#5975)
* [fp8] support fp8 amp for hybrid parallel plugin
* [test] add fp8 hook test
* [fp8] fix fp8 linear compatibility
* fix (#5976)
* [Feature]: support FP8 communication in DDP, FSDP, Gemini (#5928)
* support fp8_communication in the Torch DDP grad comm, FSDP grad comm, and FSDP params comm
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* implement communication hook for FSDP params all-gather
* added unit test for fp8 operators
* support fp8 communication in GeminiPlugin
* update training scripts to support fsdp and fp8 communication
* fixed some minor bugs observed in unit test
* add all_gather_into_tensor_flat_fp8
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* add skip the test if torch < 2.2.0
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* add skip the test if torch < 2.2.0
* add skip the test if torch < 2.2.0
* add fp8_comm flag
* rebase latest fp8 operators
* rebase latest fp8 operators
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [test ci]Feature/fp8 comm (#5981)
* fix
* fix
* fix
* [fp8] support gemini plugin (#5978)
* [fp8] refactor hook
* [fp8] support gemini plugin
* [example] add fp8 option for llama benchmark
* [fp8] use torch compile (torch >= 2.3.0) (#5979)
* [fp8] use torch compile (torch >= 2.4.0)
* [fp8] set use_fast_accum in linear
* [chore] formal version check
* [chore] fix sig
* [fp8]Moe support fp8 communication (#5977)
* fix
* support moe fp8
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
fix
fi
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [fp8] support hybrid parallel plugin (#5982)
* support fp8 comm for qwen2 model
* support fp8 comm for qwen2 model
* support fp8 comm for qwen2 model
* fp8
* fix
* bert and bloom
* chatglm and command
* gpt2,gptj,bert, falcon,blip2
* mistral,opy,sam,t5,vit,whisper
* fix
* fix
* fix
* [fp8] refactor fp8 linear with compile (#5993)
* [fp8] refactor fp8 linear with compile
* [fp8] fix linear test
* [fp8] fix linear test
* [fp8] support asynchronous FP8 communication (#5997)
* fix
* fix
* fix
* support async all2all
* support async op for all gather
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [fp8] update torch.compile for linear_fp8 to >= 2.4.0 (#6004)
* [fp8] linear perf enhancement
* [fp8]update reduce-scatter test (#6002)
* fix
* fix
* fix
* fix
* [fp8] add use_fp8 option for MoeHybridParallelPlugin (#6009)
* [fp8] zero support fp8 linear. (#6006)
* fix
* fix
* fix
* zero fp8
* zero fp8
* Update requirements.txt
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the merge
* fix the merge
* fix the merge
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the merge
* fix
* fix
* fix the merge
* fix
* fix
* fix
* fix
* fix
* fix the merge
* fix
* fix
* fix
* fix
* [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016)
* add SimPO
* fix dataloader
* remove debug code
* add orpo
* fix style
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix torch colossalai version
* update transformers version
* [shardformer] DeepseekMoE support (#5871)
* [Feature] deepseek moe expert parallel implement
* [misc] fix typo, remove redundant file (#5867)
* [misc] fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] deepseek support & unit test
* [misc] remove debug code & useless print
* [misc] fix typos (#5872)
* [Feature] remove modeling file, use auto config. (#5884)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [Deepseek] remove redundant code (#5888)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [Feature/deepseek] resolve comment. (#5889)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [misc] mv module replacement into if branch
* [misc] add some warning message and modify some code in unit test
* [misc] fix typos
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)
* Diffusion Model Inference support
* Stable Diffusion 3 Support
* pixartalpha support
* [HotFix] CI,import,requirements-test for #5838 (#5892)
* [Hot Fix] CI,import,requirements-test
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] Enable PP + SP for llama (#5868)
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use a one cross entropy func for all shardformer models
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)
* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint
* fix style
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix eval
* hotfix citation
* [zero] support all-gather overlap (#5898)
* [zero] support all-gather overlap
* [zero] add overlap all-gather flag
* [misc] fix typo
* [zero] update api
* fix orpo cross entropy loss
* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)
* Remove unnecessary calls to deepcopy
* Build DimSpec's difference dict only once
This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.
* Fix documentation of DimSpec's difference method
* [ShardFormer] fix qwen2 sp (#5903)
* [compatibility] support torch 2.2 (#5875)
* Support Pytorch 2.2.2
* keep build_on_pr file and update .compatibility
* fix object_to_tensor usage when torch>=2.3.0 (#5820)
* [misc] support torch2.3 (#5893)
* [misc] support torch2.3
* [devops] update compatibility ci
* [devops] update compatibility ci
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] remove debug
* [devops] remove debug
* [release] update version (#5912)
* [plugin] support all-gather overlap for hybrid parallel (#5919)
* [plugin] fixed all-gather overlap support for hybrid parallel
* add kto
* fix style, add kto data sample
* [Examples] Add lazy init to OPT and GPT examples (#5924)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [ColossalChat] Hotfix for ColossalChat (#5910)
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* fix ddp issue
* add Qwen 1.5 32B
* refactor tokenization
* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)
* cannot access local variable 'default_conversation' where it is not associated with a value
set default value for 'default_conversation'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix test data
* refactor evaluation
* remove real data path
* remove real data path
* Add n_fused as an input from native_module (#5894)
* [FIX BUG] convert env param to int in (#5934)
* [Hotfix] Fix ZeRO typo #5936
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)
* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix style
* fix style
* fix style
* [shardformer] hotfix attn mask (#5945)
* [shardformer] hotfix attn mask (#5947)
* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)
* Distrifusion Support source
* comp comm overlap optimization
* sd3 benchmark
* pixart distrifusion bug fix
* sd3 bug fix and benchmark
* generation bug fix
* naming fix
* add docstring, fix counter and shape error
* add reference
* readme and requirement
* [zero] hotfix update master params (#5951)
* [release] update version (#5952)
* [Chat] Fix lora (#5946)
* fix merging
* remove filepath
* fix style
* Update README.md (#5958)
* [hotfix] Remove unused plan section (#5957)
* remove readme
* fix readme
* update
* [test] add mixtral for sequence classification
* [test] add mixtral transformer test
* [moe] fix plugin
* [test] mixtra pp shard test
* [chore] handle non member group
* [zero] solve hang
* [test] pass mixtral shardformer test
* [moe] implement transit between non moe tp and ep
* [zero] solve hang
* [misc] solve booster hang by rename the variable
* solve hang when parallel mode = pp + dp
* [moe] implement submesh initialization
* [moe] add mixtral dp grad scaling when not all experts are activated
* [chore] manually revert unintended commit
* [chore] trivial fix
* [chore] arg pass & remove drop token
* [test] add mixtral modelling test
* [moe] implement tp
* [moe] test deepseek
* [moe] clean legacy code
* [Feature] MoE Ulysses Support (#5918)
* moe sp support
* moe sp bug solve
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [chore] minor fix
* [moe] init moe plugin comm setting with sp
* moe sp + ep bug fix
* [moe] finalize test (no pp)
* [moe] full test for deepseek and mixtral (pp + sp to fix)
* [chore] minor fix after rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [chore] solve moe ckpt test failure and some other arg pass failure
* [moe] remove ops
* [test] fix test: test_zero1_2
* [bug] fix: somehow logger hangs the program
* [moe] deepseek moe sp support
* [test] add check
* [deepseek] replace attn (a workaround for bug in transformers)
* [misc] skip redunant test
* [misc] remove debug/print code
* [moe] refactor mesh assignment
* Revert "[moe] implement submesh initialization"
This reverts commit 2f9bce6686d1415a83d5726dc5ff02222c742582.
* [chore] change moe_pg_mesh to private
* [misc] remove incompatible test config
* [misc] fix ci failure: change default value to false in moe plugin
* [misc] remove useless condition
* [chore] docstring
* [moe] remove force_overlap_comm flag and add warning instead
* [doc] add MoeHybridParallelPlugin docstring
* [moe] solve dp axis issue
* [chore] remove redundant test case, print string & reduce test tokens
* [feat] Dist Loader for Eval (#5950)
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tp error
* remove unused parameters
* remove unused
* update inference
* update docs
* update inference
---------
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [lora] lora support hybrid parallel plugin (#5956)
* lora support hybrid plugin
* fix
* fix
* fix
* fix
* Support overall loss, update KTO logging
* [Docs] clarify launch port
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Hotfix] README link (#5966)
* update ignore
* update readme
* run style
* update readme
* [Hotfix] Avoid fused RMSnorm import error without apex (#5985)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Chat] fix readme (#5989)
* fix readme
* fix readme, tokenization fully tested
* fix readme, tokenization fully tested
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix sync condition (#6000)
* [plugin] add cast inputs option for zero (#6003)
* [pre-commit.ci] pre-commit autoupdate (#5995)
updates:
- [github.com/psf/black-pre-commit-mirror: 24.4.2 → 24.8.0](https://github.com/psf/black-pre-commit-mirror/compare/24.4.2...24.8.0)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [misc] Bypass the huggingface bug to solve the mask mismatch problem (#5991)
* [Feature] Zigzag Ring attention (#5905)
* halfway
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* unified cross entropy func for all shardformer models
* remove redundant lines
* add basic ring attn; debug cross entropy
* fwd bwd logic complete
* fwd bwd logic complete; add experimental triton rescale
* precision tests passed
* precision tests passed
* fix typos and remove misc files
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* add sp_mode to benchmark; fix varlen interface
* update softmax_lse shape by new interface
* change tester name
* remove buffer clone; support packed seq layout
* add varlen tests
* fix typo
* all tests passed
* add dkv_group; fix mask
* remove debug statements
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [misc] update compatibility (#6008)
* [misc] update compatibility
* [misc] update requirements
* [devops] disable requirements cache
* [test] fix torch ddp test
* [test] fix rerun on address in use
* [test] fix lazy init
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the merge
* fix the merge
* overlap kv comm with output rescale (#6017)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* fix the merge
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the merge
* fix
* fix
* fix the merge
* fix
* [misc] Use dist logger in plugins (#6011)
* use dist logger in plugins
* remove trash
* print on rank 0
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* fix
* fix
* fix
* fix
* fix the merge
* fix
* fix
* fix
* fix
---------
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update train_dpo.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update low_level_zero_plugin.py
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [CI] Remove triton version for compatibility bug; update req torch >=2.2 (#6018)
* remove triton version
* remove torch 2.2
* remove torch 2.1
* debug
* remove 2.1 build tests
* require torch >=2.2
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [plugin] hotfix zero plugin (#6036)
* [plugin] hotfix zero plugin
* [plugin] hotfix zero plugin
* [Colossal-LLaMA] Refactor latest APIs (#6030)
* refactor latest code
* update api
* add dummy dataset
* update Readme
* add setup
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* update files
* add PP support
* update arguments
* update argument
* reorg folder
* update version
* remove IB infor
* update utils
* update readme
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* update save for zero
* update save
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* add apex
* update
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* add fused norm (#6038)
* [FP8] unsqueeze scale to make it compatible with torch.compile (#6040)
* [colossalai/checkpoint_io/...] fix bug in load_state_dict_into_model; format error msg (#6020)
* fix bug in load_state_dict_into_model; format error msg
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update utils.py
to support checking missing_keys
* Update general_checkpoint_io.py
fix bug in missing_keys error message
* retrigger tests
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hotfix] Remove deprecated install (#6042)
* remove deprecated install
* remove unused folder
* [fp8] optimize all-gather (#6043)
* [fp8] optimize all-gather
* [fp8] fix all gather fp8 ring
* [fp8] enable compile
* [fp8] fix all gather fp8 ring
* [fp8] fix linear hook (#6046)
* [fp8] disable all_to_all_fp8 in intranode (#6045)
* enhance all_to_all_fp8 with internode comm control
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* disable some fp8 ops due to performance issue
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [release] update version (#6041)
* [release] update version
* [devops] update comp test
* [devops] update comp test debug
* [devops] debug comp test
* [devops] debug comp test
* [devops] debug comp test
* [devops] debug comp test
* [devops] debug comp test
* [Feature] Split cross-entropy computation in SP (#5959)
* halfway
* fix cross-PP-stage position id length diff bug
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* unified cross entropy func for all shardformer models
* remove redundant lines
* add basic ring attn; debug cross entropy
* fwd bwd logic complete
* fwd bwd logic complete; add experimental triton rescale
* precision tests passed
* precision tests passed
* fix typos and remove misc files
* update softmax_lse shape by new interface
* change tester name
* remove buffer clone; support packed seq layout
* add varlen tests
* fix typo
* all tests passed
* add dkv_group; fix mask
* remove debug statements
* adapt chatglm, command-R, qwen
* debug
* halfway
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* unified cross entropy func for all shardformer models
* remove redundant lines
* add basic ring attn; debug cross entropy
* fwd bwd logic complete
* fwd bwd logic complete; add experimental triton rescale
* precision tests passed
* precision tests passed
* fix typos and remove misc files
* add sp_mode to benchmark; fix varlen interface
* update softmax_lse shape by new interface
* add varlen tests
* fix typo
* all tests passed
* add dkv_group; fix mask
* remove debug statements
* add comments
* q1 index only once
* remove events to simplify stream sync
* simplify forward/backward logic
* 2d ring forward passed
* 2d ring backward passed
* fixes
* fix ring attn loss
* 2D ring backward + llama passed
* merge
* update logger
* fix typo
* rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix typo
* remove typos
* fixes
* support GPT
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [hotfix] moe hybrid parallelism benchmark & follow-up fix (#6048)
* [example] pass use_fp8_comm flag to all plugins
* [example] add mixtral benchmark
* [moe] refine assertion and check
* [moe] fix mixtral & add more tests
* [moe] consider checking dp * sp group and moe_dp_group
* [mixtral] remove gate tp & add more tests
* [deepseek] fix tp & sp for deepseek
* [mixtral] minor fix
* [deepseek] add deepseek benchmark
* [fp8] hotfix backward hook (#6053)
* [fp8] hotfix backward hook
* [fp8] hotfix pipeline loss accumulation
* [doc] update sp doc (#6055)
* update sp doc
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix the sp
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the attn
* fix
* fix
* fix
* fix
* [zerobubble]Support ZeroBubble Pipeline (#6034)
* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;
* [feat] add dw test;
* [fix] fix weight not close;
* [update] update text;
* [feat] add test run_fwd_bwd automatic scheduling;
* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;
* [feat] add test for p & p grad;
* [feat] add comments for ZBV func;
* [fix] rm useless assign and comments;
* [fix] fix ci test; add pytest;
* [feat] add run_fwd_bwd_with_microbatch (replace input) & test; add p&p.grad assert close test & all pass;
* [feat] add apply v_schedule graph; p & p.grad assert err exist;
* [fix] update
* [feat] fix ci; add assert;
* [feat] fix poc format
* [feat] fix func name & ci; add comments;
* [fix] fix poc test; add comments in poc;
* [feat] add optim backward_b_by_grad
* [feat] fix optimizer bwd b & w; support return accum loss & output
* [feat] add fwd_bwd_step, run_fwd_only;
* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;
* [fix] fix communication_map;
* [feat] update test; rm comments;
* [fix] rm zbv in hybridplugin
* [fix] fix optim bwd;
* [fix] fix optim bwd;
* [fix] rm output.data after send fwd;
* [fix] fix bwd step if condition; remove useless comments and format info;
* [fix] fix detach output & release output;
* [fix] rm requir_grad for output;
* [fix] fix requir grad position and detach position and input&output local buffer append position;
* [feat] add memory assertation;
* [fix] fix mem check;
* [fix] mem assertation'
* [fix] fix mem assertation
* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;
* [fix] fix model zoo import;
* [fix] fix redundant detach & clone; add buffer assertation in the end;
* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;
* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;
* [fix] add testcase with microbatch 4;
* [fp8] fix missing fp8_comm flag in mixtral (#6057)
* fix
* fix
* fix
* [fp8] Disable all_gather intranode. Disable Redundant all_gather fp8 (#6059)
* all_gather only internode, fix pytest
* fix cuda arch <89 compile pytest error
* fix pytest failure
* disable all_gather_into_tensor_flat_fp8
* fix fp8 format
* fix pytest
* fix conversations
* fix chunk tuple to list
* [doc] FP8 training and communication document (#6050)
* Add FP8 training and communication document
* add fp8 docstring for plugins
* fix typo
* fix typo
* fix
* fix
* [moe] add parallel strategy for shared_expert && fix test for deepseek (#6063)
* [ColossalEval] support for vllm (#6056)
* support vllm
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* modify vllm and update readme
* run pre-commit
* remove dupilicated lines and refine code
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* update param name
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* refine code
* update readme
* refine code
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [release] update version (#6062)
* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;
* [update] update text;
* [feat] add test run_fwd_bwd automatic scheduling;
* [feat] fix poc format
* [fix] fix poc test; add comments in poc;
* [feat] add optim backward_b_by_grad
* [feat] fix optimizer bwd b & w; support return accum loss & output
* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;
* [feat] update test; rm comments;
* [fix] rm zbv in hybridplugin
* [fix] fix optim bwd;
* [fix] fix optim bwd;
* [fix] rm output.data after send fwd;
* [fix] fix bwd step if condition; remove useless comments and format info;
* [fix] fix mem check;
* [fix] fix mem assertation
* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;
* [fix] fix model zoo import;
* [feat] moehybrid support zerobubble;
* [fix] fix zerobubble pp for shardformer type input;
* [fix] fix require_grad & deallocate call;
* [fix] fix mem assert;
* [fix] fix fwd branch, fwd pass both micro_batch & internal_inputs'
* [fix] fix pipeline util func deallocate --> release_tensor_data; fix bwd_b loss bwd branch;
* [fix] fix zerobubble; support shardformer model type;
* [fix] fix test_pipeline_utils ci;
* [plugin] hybrid support zero bubble pipeline (#6060)
* hybrid support zbv
* fix
fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* Update zero_bubble_pp.py
* fix
* fix-ci
* fix
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* fix
* [zerobubble]Support ZeroBubble Pipeline (#6034)
* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;
* [feat] add dw test;
* [fix] fix weight not close;
* [update] update text;
* [feat] add test run_fwd_bwd automatic scheduling;
* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;
* [feat] add test for p & p grad;
* [feat] add comments for ZBV func;
* [fix] rm useless assign and comments;
* [fix] fix ci test; add pytest;
* [feat] add run_fwd_bwd_with_microbatch (replace input) & test; add p&p.grad assert close test & all pass;
* [feat] add apply v_schedule graph; p & p.grad assert err exist;
* [fix] update
* [feat] fix ci; add assert;
* [feat] fix poc format
* [feat] fix func name & ci; add comments;
* [fix] fix poc test; add comments in poc;
* [feat] add optim backward_b_by_grad
* [feat] fix optimizer bwd b & w; support return accum loss & output
* [feat] add fwd_bwd_step, run_fwd_only;
* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;
* [fix] fix communication_map;
* [feat] update test; rm comments;
* [fix] rm zbv in hybridplugin
* [fix] fix optim bwd;
* [fix] fix optim bwd;
* [fix] rm output.data after send fwd;
* [fix] fix bwd step if condition; remove useless comments and format info;
* [fix] fix detach output & release output;
* [fix] rm requir_grad for output;
* [fix] fix requir grad position and detach position and input&output local buffer append position;
* [feat] add memory assertation;
* [fix] fix mem check;
* [fix] mem assertation'
* [fix] fix mem assertation
* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;
* [fix] fix model zoo import;
* [fix] fix redundant detach & clone; add buffer assertation in the end;
* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;
* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;
* [fix] add testcase with microbatch 4;
* hybrid support zbv
* fix
fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update zero_bubble_pp.py
* fix
* fix-ci
* fix
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* fix
* fix
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* fix
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: duanjunwen <935724073@qq.com>
* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;
* [update] update text;
* [feat] add test run_fwd_bwd automatic scheduling;
* [feat] fix poc format
* [fix] fix poc test; add comments in poc;
* [feat] add optim backward_b_by_grad
* [feat] fix optimizer bwd b & w; support return accum loss & output
* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;
* [feat] update test; rm comments;
* [fix] fix optim bwd;
* [fix] fix optim bwd;
* [fix] rm output.data after send fwd;
* [fix] fix bwd step if condition; remove useless comments and format info;
* [fix] fix mem check;
* [fix] fix mem assertation
* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;
* [fix] fix model zoo import;
* [fix] fix mem assert;
* [fix] fix fwd branch, fwd pass both micro_batch & internal_inputs'
* [plugin] hybrid support zero bubble pipeline (#6060)
* hybrid support zbv
* fix
fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* Update zero_bubble_pp.py
* fix
* fix-ci
* fix
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* fix
* [zerobubble]Support ZeroBubble Pipeline (#6034)
* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;
* [feat] add dw test;
* [fix] fix weight not close;
* [update] update text;
* [feat] add test run_fwd_bwd automatic scheduling;
* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;
* [feat] add test for p & p grad;
* [feat] add comments for ZBV func;
* [fix] rm useless assign and comments;
* [fix] fix ci test; add pytest;
* [feat] add run_fwd_bwd_with_microbatch (replace input) & test; add p&p.grad assert close test & all pass;
* [feat] add apply v_schedule graph; p & p.grad assert err exist;
* [fix] update
* [feat] fix ci; add assert;
* [feat] fix poc format
* [feat] fix func name & ci; add comments;
* [fix] fix poc test; add comments in poc;
* [feat] add optim backward_b_by_grad
* [feat] fix optimizer bwd b & w; support return accum loss & output
* [feat] add fwd_bwd_step, run_fwd_only;
* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;
* [fix] fix communication_map;
* [feat] update test; rm comments;
* [fix] rm zbv in hybridplugin
* [fix] fix optim bwd;
* [fix] fix optim bwd;
* [fix] rm output.data after send fwd;
* [fix] fix bwd step if condition; remove useless comments and format info;
* [fix] fix detach output & release output;
* [fix] rm requir_grad for output;
* [fix] fix requir grad position and detach position and input&output local buffer append position;
* [feat] add memory assertation;
* [fix] fix mem check;
* [fix] mem assertation'
* [fix] fix mem assertation
* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;
* [fix] fix model zoo import;
* [fix] fix redundant detach & clone; add buffer assertation in the end;
* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;
* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;
* [fix] add testcase with microbatch 4;
* hybrid support zbv
* fix
fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update zero_bubble_pp.py
* fix
* fix-ci
* fix
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* fix
* fix
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* fix
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: duanjunwen <935724073@qq.com>
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* zbv support zero
* fix
* fix
* fix
---------
Co-authored-by: HangXu <hangxu0304@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: GuangyaoZhang <xjtu521@qq.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: wangbluo <2538539015@qq.com>
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com>
2024-10-11 06:14:05 +00:00
|
|
|
from contextlib import nullcontext
|
2024-08-22 10:25:34 +00:00
|
|
|
from copy import deepcopy
|
2024-09-18 07:14:34 +00:00
|
|
|
from functools import partial
|
2024-08-22 10:25:34 +00:00
|
|
|
from typing import Tuple
|
|
|
|
|
2024-08-27 07:31:58 +00:00
|
|
|
import pytest
|
2024-08-22 10:25:34 +00:00
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
import torch.nn as nn
|
2024-08-23 06:04:12 +00:00
|
|
|
from torch.testing import assert_close
|
2024-10-16 03:25:04 +00:00
|
|
|
from transformers.models.llama.configuration_llama import LlamaConfig
|
|
|
|
from transformers.models.llama.modeling_llama import LlamaModel
|
2024-09-29 08:33:55 +00:00
|
|
|
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
|
|
|
|
from transformers.models.mixtral.modeling_mixtral import MixtralModel
|
2024-08-22 10:25:34 +00:00
|
|
|
|
|
|
|
import colossalai
|
2024-09-29 08:33:55 +00:00
|
|
|
from colossalai.booster.booster import Booster
|
2024-10-16 03:25:04 +00:00
|
|
|
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import HybridParallelPlugin, MoeHybridParallelPlugin
|
2024-08-22 10:25:34 +00:00
|
|
|
from colossalai.cluster import ProcessGroupMesh
|
2024-08-29 03:16:59 +00:00
|
|
|
from colossalai.interface import OptimizerWrapper
|
2024-09-02 09:50:47 +00:00
|
|
|
from colossalai.logging import disable_existing_loggers
|
2024-08-27 10:29:39 +00:00
|
|
|
from colossalai.pipeline.schedule.v_schedule import PipelineGraph, ScheduledNode
|
2024-08-22 10:25:34 +00:00
|
|
|
from colossalai.pipeline.schedule.zero_bubble_pp import ZeroBubbleVPipeScheduler
|
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
2024-09-29 09:59:41 +00:00
|
|
|
from colossalai.shardformer.layer.utils import Randomizer
|
|
|
|
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
2024-09-02 09:50:47 +00:00
|
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
2024-09-29 08:33:55 +00:00
|
|
|
from colossalai.testing.random import seed_all
|
|
|
|
from tests.test_moe.moe_utils import assert_loose_close
|
|
|
|
|
|
|
|
NUM_BATCH = 8
|
|
|
|
NUM_TOK_PER_BATCH, NUM_EXPERTS = 4, 4
|
|
|
|
NUM_LAYERS = 8
|
|
|
|
HIDDEN_SIZE_PER_HEAD = 4
|
|
|
|
NUM_HEADS = 4
|
|
|
|
TOP_K = 1
|
2024-08-22 10:25:34 +00:00
|
|
|
|
|
|
|
|
2024-11-12 07:28:49 +00:00
|
|
|
def register_hooks(module: torch.nn.Module):
|
|
|
|
|
|
|
|
def fwd_hook(module, input, output):
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
name = module._name if hasattr(module, "_name") else module
|
|
|
|
print(f"Fwd hook {name} \n output {output}")
|
|
|
|
|
|
|
|
def bwd_hook(module, grad_input, grad_output):
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
|
|
|
|
def bwd_pre_hook(module, grad_output):
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
|
|
|
|
module.register_forward_hook(fwd_hook)
|
|
|
|
# module.register_backward_hook(bwd_hook)
|
|
|
|
# module.register_full_backward_pre_hook(bwd_pre_hook)
|
|
|
|
|
|
|
|
|
2024-08-22 10:25:34 +00:00
|
|
|
class MlpModel(nn.Module):
|
2024-09-26 06:11:56 +00:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_dim,
|
|
|
|
out_dim,
|
|
|
|
num_layers,
|
|
|
|
stage_index=None,
|
|
|
|
stage_mgr: PipelineStageManager = None,
|
|
|
|
):
|
2024-08-22 10:25:34 +00:00
|
|
|
super().__init__()
|
2024-09-26 06:11:56 +00:00
|
|
|
self.layers = nn.Sequential(*[nn.Linear(in_dim, out_dim, bias=None) for _ in range(num_layers)])
|
2024-08-22 10:25:34 +00:00
|
|
|
|
2024-09-18 07:14:34 +00:00
|
|
|
def forward(
|
|
|
|
self,
|
2024-09-26 06:11:56 +00:00
|
|
|
data: torch.Tensor = None,
|
|
|
|
hidden_states: torch.Tensor = None,
|
|
|
|
stage_index=None,
|
|
|
|
stage_mgr: PipelineStageManager = None,
|
|
|
|
model_chunk_id: int = None,
|
2024-09-18 07:14:34 +00:00
|
|
|
):
|
2024-09-26 06:11:56 +00:00
|
|
|
if stage_mgr is None:
|
|
|
|
hidden_states = data
|
|
|
|
for layer in self.layers:
|
|
|
|
hidden_states = layer(hidden_states)
|
|
|
|
return hidden_states
|
2024-09-18 07:14:34 +00:00
|
|
|
else:
|
2024-09-26 06:11:56 +00:00
|
|
|
# Set not used layer to None
|
|
|
|
held_layers = self.layers[stage_index[0] : stage_index[1]]
|
|
|
|
|
|
|
|
# fwd end
|
|
|
|
if stage_mgr.is_first_stage() and stage_mgr.model_chunk_id == 1:
|
|
|
|
return held_layers(hidden_states)
|
|
|
|
# fwd start
|
|
|
|
elif stage_mgr.is_first_stage() and stage_mgr.model_chunk_id == 0:
|
|
|
|
return {"hidden_states": held_layers(data)}
|
|
|
|
# fwd middle
|
|
|
|
else:
|
|
|
|
return {"hidden_states": held_layers(hidden_states)}
|
|
|
|
|
[zero bubble] support zero (#6080)
* fp8 operators for compressed communication
cast_to_fp8, cast_from_fp8, all_reduce_fp8
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix typo
* fix scaling algorithm in FP8 casting
* support fp8 communication in pipeline parallelism
* add fp8_communication flag in the script
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* shardformer fp8
* fix rebase
* remove all to all
* fix shardformer fp8 communication training degradation
* [fp8] support all-gather flat tensor (#5932)
* [fp8] add fp8 comm for low level zero
* [test] add zero fp8 test case
* [Feature] llama shardformer fp8 support (#5938)
* add llama shardformer fp8
* Llama Shardformer Parity
* fix typo
* fix all reduce
* fix pytest failure
* fix reduce op and move function to fp8.py
* fix typo
* [FP8] rebase main (#5963)
* add SimPO
* fix dataloader
* remove debug code
* add orpo
* fix style
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix torch colossalai version
* update transformers version
* [shardformer] DeepseekMoE support (#5871)
* [Feature] deepseek moe expert parallel implement
* [misc] fix typo, remove redundant file (#5867)
* [misc] fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] deepseek support & unit test
* [misc] remove debug code & useless print
* [misc] fix typos (#5872)
* [Feature] remove modeling file, use auto config. (#5884)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [Deepseek] remove redundant code (#5888)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [Feature/deepseek] resolve comment. (#5889)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [misc] mv module replacement into if branch
* [misc] add some warning message and modify some code in unit test
* [misc] fix typos
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)
* Diffusion Model Inference support
* Stable Diffusion 3 Support
* pixartalpha support
* [HotFix] CI,import,requirements-test for #5838 (#5892)
* [Hot Fix] CI,import,requirements-test
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] Enable PP + SP for llama (#5868)
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use a one cross entropy func for all shardformer models
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)
* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint
* fix style
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix eval
* hotfix citation
* [zero] support all-gather overlap (#5898)
* [zero] support all-gather overlap
* [zero] add overlap all-gather flag
* [misc] fix typo
* [zero] update api
* fix orpo cross entropy loss
* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)
* Remove unnecessary calls to deepcopy
* Build DimSpec's difference dict only once
This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.
* Fix documentation of DimSpec's difference method
* [ShardFormer] fix qwen2 sp (#5903)
* [compatibility] support torch 2.2 (#5875)
* Support Pytorch 2.2.2
* keep build_on_pr file and update .compatibility
* fix object_to_tensor usage when torch>=2.3.0 (#5820)
* [misc] support torch2.3 (#5893)
* [misc] support torch2.3
* [devops] update compatibility ci
* [devops] update compatibility ci
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] remove debug
* [devops] remove debug
* [release] update version (#5912)
* [plugin] support all-gather overlap for hybrid parallel (#5919)
* [plugin] fixed all-gather overlap support for hybrid parallel
* add kto
* fix style, add kto data sample
* [Examples] Add lazy init to OPT and GPT examples (#5924)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [ColossalChat] Hotfix for ColossalChat (#5910)
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* fix ddp issue
* add Qwen 1.5 32B
* refactor tokenization
* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)
* cannot access local variable 'default_conversation' where it is not associated with a value
set default value for 'default_conversation'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix test data
* refactor evaluation
* remove real data path
* remove real data path
* Add n_fused as an input from native_module (#5894)
* [FIX BUG] convert env param to int in (#5934)
* [Hotfix] Fix ZeRO typo #5936
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)
* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix style
* fix style
* fix style
* [shardformer] hotfix attn mask (#5945)
* [shardformer] hotfix attn mask (#5947)
* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)
* Distrifusion Support source
* comp comm overlap optimization
* sd3 benchmark
* pixart distrifusion bug fix
* sd3 bug fix and benchmark
* generation bug fix
* naming fix
* add docstring, fix counter and shape error
* add reference
* readme and requirement
* [zero] hotfix update master params (#5951)
* [release] update version (#5952)
* [Chat] Fix lora (#5946)
* fix merging
* remove filepath
* fix style
* Update README.md (#5958)
* [hotfix] Remove unused plan section (#5957)
* remove readme
* fix readme
* update
* [test] add mixtral for sequence classification
* [test] add mixtral transformer test
* [moe] fix plugin
* [test] mixtra pp shard test
* [chore] handle non member group
* [zero] solve hang
* [test] pass mixtral shardformer test
* [moe] implement transit between non moe tp and ep
* [zero] solve hang
* [misc] solve booster hang by rename the variable
* solve hang when parallel mode = pp + dp
* [moe] implement submesh initialization
* [moe] add mixtral dp grad scaling when not all experts are activated
* [chore] manually revert unintended commit
* [chore] trivial fix
* [chore] arg pass & remove drop token
* [test] add mixtral modelling test
* [moe] implement tp
* [moe] test deepseek
* [moe] clean legacy code
* [Feature] MoE Ulysses Support (#5918)
* moe sp support
* moe sp bug solve
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [chore] minor fix
* [moe] init moe plugin comm setting with sp
* moe sp + ep bug fix
* [moe] finalize test (no pp)
* [moe] full test for deepseek and mixtral (pp + sp to fix)
* [chore] minor fix after rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [chore] solve moe ckpt test failure and some other arg pass failure
* [moe] remove ops
* [test] fix test: test_zero1_2
* [bug] fix: somehow logger hangs the program
* [moe] deepseek moe sp support
* [test] add check
* [deepseek] replace attn (a workaround for bug in transformers)
* [misc] skip redunant test
* [misc] remove debug/print code
* [moe] refactor mesh assignment
* Revert "[moe] implement submesh initialization"
This reverts commit 2f9bce6686d1415a83d5726dc5ff02222c742582.
* [chore] change moe_pg_mesh to private
* [misc] remove incompatible test config
* [misc] fix ci failure: change default value to false in moe plugin
* [misc] remove useless condition
* [chore] docstring
* [moe] remove force_overlap_comm flag and add warning instead
* [doc] add MoeHybridParallelPlugin docstring
* [moe] solve dp axis issue
* [chore] remove redundant test case, print string & reduce test tokens
* [feat] Dist Loader for Eval (#5950)
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tp error
* remove unused parameters
* remove unused
* update inference
* update docs
* update inference
---------
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [lora] lora support hybrid parallel plugin (#5956)
* lora support hybrid plugin
* fix
* fix
* fix
* fix
* fp8 operators for compressed communication
cast_to_fp8, cast_from_fp8, all_reduce_fp8
* fix scaling algorithm in FP8 casting
* support fp8 communication in pipeline parallelism
* add fp8_communication flag in the script
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* shardformer fp8
* fix rebase
* remove all to all
* fix shardformer fp8 communication training degradation
* [fp8] support all-gather flat tensor (#5932)
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* Update low_level_optim.py
---------
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>
* [fp8]support all2all fp8 (#5953)
* support all2all fp8
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [fp8] add fp8 linear (#5967)
* [fp8] add fp8 linear
* [test] fix fp8 linear test condition
* [test] fix fp8 linear test condition
* [test] fix fp8 linear test condition
* [fp8] support fp8 amp for hybrid parallel plugin (#5975)
* [fp8] support fp8 amp for hybrid parallel plugin
* [test] add fp8 hook test
* [fp8] fix fp8 linear compatibility
* fix (#5976)
* [Feature]: support FP8 communication in DDP, FSDP, Gemini (#5928)
* support fp8_communication in the Torch DDP grad comm, FSDP grad comm, and FSDP params comm
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* implement communication hook for FSDP params all-gather
* added unit test for fp8 operators
* support fp8 communication in GeminiPlugin
* update training scripts to support fsdp and fp8 communication
* fixed some minor bugs observed in unit test
* add all_gather_into_tensor_flat_fp8
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* add skip the test if torch < 2.2.0
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* add skip the test if torch < 2.2.0
* add skip the test if torch < 2.2.0
* add fp8_comm flag
* rebase latest fp8 operators
* rebase latest fp8 operators
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [test ci]Feature/fp8 comm (#5981)
* fix
* fix
* fix
* [fp8] support gemini plugin (#5978)
* [fp8] refactor hook
* [fp8] support gemini plugin
* [example] add fp8 option for llama benchmark
* [fp8] use torch compile (torch >= 2.3.0) (#5979)
* [fp8] use torch compile (torch >= 2.4.0)
* [fp8] set use_fast_accum in linear
* [chore] formal version check
* [chore] fix sig
* [fp8]Moe support fp8 communication (#5977)
* fix
* support moe fp8
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
fix
fi
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [fp8] support hybrid parallel plugin (#5982)
* support fp8 comm for qwen2 model
* support fp8 comm for qwen2 model
* support fp8 comm for qwen2 model
* fp8
* fix
* bert and bloom
* chatglm and command
* gpt2,gptj,bert, falcon,blip2
* mistral,opy,sam,t5,vit,whisper
* fix
* fix
* fix
* [fp8] refactor fp8 linear with compile (#5993)
* [fp8] refactor fp8 linear with compile
* [fp8] fix linear test
* [fp8] fix linear test
* [fp8] support asynchronous FP8 communication (#5997)
* fix
* fix
* fix
* support async all2all
* support async op for all gather
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [fp8] update torch.compile for linear_fp8 to >= 2.4.0 (#6004)
* [fp8] linear perf enhancement
* [fp8]update reduce-scatter test (#6002)
* fix
* fix
* fix
* fix
* [fp8] add use_fp8 option for MoeHybridParallelPlugin (#6009)
* [fp8] zero support fp8 linear. (#6006)
* fix
* fix
* fix
* zero fp8
* zero fp8
* Update requirements.txt
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the merge
* fix the merge
* fix the merge
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the merge
* fix
* fix
* fix the merge
* fix
* fix
* fix
* fix
* fix
* fix the merge
* fix
* fix
* fix
* fix
* [fp8] Merge feature/fp8_comm to main branch of Colossalai (#6016)
* add SimPO
* fix dataloader
* remove debug code
* add orpo
* fix style
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix torch colossalai version
* update transformers version
* [shardformer] DeepseekMoE support (#5871)
* [Feature] deepseek moe expert parallel implement
* [misc] fix typo, remove redundant file (#5867)
* [misc] fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] deepseek support & unit test
* [misc] remove debug code & useless print
* [misc] fix typos (#5872)
* [Feature] remove modeling file, use auto config. (#5884)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [Deepseek] remove redundant code (#5888)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [Feature/deepseek] resolve comment. (#5889)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [misc] mv module replacement into if branch
* [misc] add some warning message and modify some code in unit test
* [misc] fix typos
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)
* Diffusion Model Inference support
* Stable Diffusion 3 Support
* pixartalpha support
* [HotFix] CI,import,requirements-test for #5838 (#5892)
* [Hot Fix] CI,import,requirements-test
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] Enable PP + SP for llama (#5868)
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use a one cross entropy func for all shardformer models
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)
* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint
* fix style
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix eval
* hotfix citation
* [zero] support all-gather overlap (#5898)
* [zero] support all-gather overlap
* [zero] add overlap all-gather flag
* [misc] fix typo
* [zero] update api
* fix orpo cross entropy loss
* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)
* Remove unnecessary calls to deepcopy
* Build DimSpec's difference dict only once
This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.
* Fix documentation of DimSpec's difference method
* [ShardFormer] fix qwen2 sp (#5903)
* [compatibility] support torch 2.2 (#5875)
* Support Pytorch 2.2.2
* keep build_on_pr file and update .compatibility
* fix object_to_tensor usage when torch>=2.3.0 (#5820)
* [misc] support torch2.3 (#5893)
* [misc] support torch2.3
* [devops] update compatibility ci
* [devops] update compatibility ci
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] remove debug
* [devops] remove debug
* [release] update version (#5912)
* [plugin] support all-gather overlap for hybrid parallel (#5919)
* [plugin] fixed all-gather overlap support for hybrid parallel
* add kto
* fix style, add kto data sample
* [Examples] Add lazy init to OPT and GPT examples (#5924)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [ColossalChat] Hotfix for ColossalChat (#5910)
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* fix ddp issue
* add Qwen 1.5 32B
* refactor tokenization
* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)
* cannot access local variable 'default_conversation' where it is not associated with a value
set default value for 'default_conversation'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix test data
* refactor evaluation
* remove real data path
* remove real data path
* Add n_fused as an input from native_module (#5894)
* [FIX BUG] convert env param to int in (#5934)
* [Hotfix] Fix ZeRO typo #5936
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)
* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix style
* fix style
* fix style
* [shardformer] hotfix attn mask (#5945)
* [shardformer] hotfix attn mask (#5947)
* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)
* Distrifusion Support source
* comp comm overlap optimization
* sd3 benchmark
* pixart distrifusion bug fix
* sd3 bug fix and benchmark
* generation bug fix
* naming fix
* add docstring, fix counter and shape error
* add reference
* readme and requirement
* [zero] hotfix update master params (#5951)
* [release] update version (#5952)
* [Chat] Fix lora (#5946)
* fix merging
* remove filepath
* fix style
* Update README.md (#5958)
* [hotfix] Remove unused plan section (#5957)
* remove readme
* fix readme
* update
* [test] add mixtral for sequence classification
* [test] add mixtral transformer test
* [moe] fix plugin
* [test] mixtra pp shard test
* [chore] handle non member group
* [zero] solve hang
* [test] pass mixtral shardformer test
* [moe] implement transit between non moe tp and ep
* [zero] solve hang
* [misc] solve booster hang by rename the variable
* solve hang when parallel mode = pp + dp
* [moe] implement submesh initialization
* [moe] add mixtral dp grad scaling when not all experts are activated
* [chore] manually revert unintended commit
* [chore] trivial fix
* [chore] arg pass & remove drop token
* [test] add mixtral modelling test
* [moe] implement tp
* [moe] test deepseek
* [moe] clean legacy code
* [Feature] MoE Ulysses Support (#5918)
* moe sp support
* moe sp bug solve
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [chore] minor fix
* [moe] init moe plugin comm setting with sp
* moe sp + ep bug fix
* [moe] finalize test (no pp)
* [moe] full test for deepseek and mixtral (pp + sp to fix)
* [chore] minor fix after rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [chore] solve moe ckpt test failure and some other arg pass failure
* [moe] remove ops
* [test] fix test: test_zero1_2
* [bug] fix: somehow logger hangs the program
* [moe] deepseek moe sp support
* [test] add check
* [deepseek] replace attn (a workaround for bug in transformers)
* [misc] skip redunant test
* [misc] remove debug/print code
* [moe] refactor mesh assignment
* Revert "[moe] implement submesh initialization"
This reverts commit 2f9bce6686d1415a83d5726dc5ff02222c742582.
* [chore] change moe_pg_mesh to private
* [misc] remove incompatible test config
* [misc] fix ci failure: change default value to false in moe plugin
* [misc] remove useless condition
* [chore] docstring
* [moe] remove force_overlap_comm flag and add warning instead
* [doc] add MoeHybridParallelPlugin docstring
* [moe] solve dp axis issue
* [chore] remove redundant test case, print string & reduce test tokens
* [feat] Dist Loader for Eval (#5950)
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tp error
* remove unused parameters
* remove unused
* update inference
* update docs
* update inference
---------
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [lora] lora support hybrid parallel plugin (#5956)
* lora support hybrid plugin
* fix
* fix
* fix
* fix
* Support overall loss, update KTO logging
* [Docs] clarify launch port
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Hotfix] README link (#5966)
* update ignore
* update readme
* run style
* update readme
* [Hotfix] Avoid fused RMSnorm import error without apex (#5985)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Chat] fix readme (#5989)
* fix readme
* fix readme, tokenization fully tested
* fix readme, tokenization fully tested
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix sync condition (#6000)
* [plugin] add cast inputs option for zero (#6003)
* [pre-commit.ci] pre-commit autoupdate (#5995)
updates:
- [github.com/psf/black-pre-commit-mirror: 24.4.2 → 24.8.0](https://github.com/psf/black-pre-commit-mirror/compare/24.4.2...24.8.0)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [misc] Bypass the huggingface bug to solve the mask mismatch problem (#5991)
* [Feature] Zigzag Ring attention (#5905)
* halfway
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* unified cross entropy func for all shardformer models
* remove redundant lines
* add basic ring attn; debug cross entropy
* fwd bwd logic complete
* fwd bwd logic complete; add experimental triton rescale
* precision tests passed
* precision tests passed
* fix typos and remove misc files
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* add sp_mode to benchmark; fix varlen interface
* update softmax_lse shape by new interface
* change tester name
* remove buffer clone; support packed seq layout
* add varlen tests
* fix typo
* all tests passed
* add dkv_group; fix mask
* remove debug statements
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [misc] update compatibility (#6008)
* [misc] update compatibility
* [misc] update requirements
* [devops] disable requirements cache
* [test] fix torch ddp test
* [test] fix rerun on address in use
* [test] fix lazy init
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the merge
* fix the merge
* overlap kv comm with output rescale (#6017)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* fix the merge
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the merge
* fix
* fix
* fix the merge
* fix
* [misc] Use dist logger in plugins (#6011)
* use dist logger in plugins
* remove trash
* print on rank 0
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* fix
* fix
* fix
* fix
* fix the merge
* fix
* fix
* fix
* fix
---------
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update train_dpo.py
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update low_level_zero_plugin.py
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [CI] Remove triton version for compatibility bug; update req torch >=2.2 (#6018)
* remove triton version
* remove torch 2.2
* remove torch 2.1
* debug
* remove 2.1 build tests
* require torch >=2.2
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [plugin] hotfix zero plugin (#6036)
* [plugin] hotfix zero plugin
* [plugin] hotfix zero plugin
* [Colossal-LLaMA] Refactor latest APIs (#6030)
* refactor latest code
* update api
* add dummy dataset
* update Readme
* add setup
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* update files
* add PP support
* update arguments
* update argument
* reorg folder
* update version
* remove IB infor
* update utils
* update readme
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* update save for zero
* update save
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* add apex
* update
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* add fused norm (#6038)
* [FP8] unsqueeze scale to make it compatible with torch.compile (#6040)
* [colossalai/checkpoint_io/...] fix bug in load_state_dict_into_model; format error msg (#6020)
* fix bug in load_state_dict_into_model; format error msg
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update utils.py
to support checking missing_keys
* Update general_checkpoint_io.py
fix bug in missing_keys error message
* retrigger tests
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hotfix] Remove deprecated install (#6042)
* remove deprecated install
* remove unused folder
* [fp8] optimize all-gather (#6043)
* [fp8] optimize all-gather
* [fp8] fix all gather fp8 ring
* [fp8] enable compile
* [fp8] fix all gather fp8 ring
* [fp8] fix linear hook (#6046)
* [fp8] disable all_to_all_fp8 in intranode (#6045)
* enhance all_to_all_fp8 with internode comm control
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* disable some fp8 ops due to performance issue
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [release] update version (#6041)
* [release] update version
* [devops] update comp test
* [devops] update comp test debug
* [devops] debug comp test
* [devops] debug comp test
* [devops] debug comp test
* [devops] debug comp test
* [devops] debug comp test
* [Feature] Split cross-entropy computation in SP (#5959)
* halfway
* fix cross-PP-stage position id length diff bug
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* unified cross entropy func for all shardformer models
* remove redundant lines
* add basic ring attn; debug cross entropy
* fwd bwd logic complete
* fwd bwd logic complete; add experimental triton rescale
* precision tests passed
* precision tests passed
* fix typos and remove misc files
* update softmax_lse shape by new interface
* change tester name
* remove buffer clone; support packed seq layout
* add varlen tests
* fix typo
* all tests passed
* add dkv_group; fix mask
* remove debug statements
* adapt chatglm, command-R, qwen
* debug
* halfway
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* unified cross entropy func for all shardformer models
* remove redundant lines
* add basic ring attn; debug cross entropy
* fwd bwd logic complete
* fwd bwd logic complete; add experimental triton rescale
* precision tests passed
* precision tests passed
* fix typos and remove misc files
* add sp_mode to benchmark; fix varlen interface
* update softmax_lse shape by new interface
* add varlen tests
* fix typo
* all tests passed
* add dkv_group; fix mask
* remove debug statements
* add comments
* q1 index only once
* remove events to simplify stream sync
* simplify forward/backward logic
* 2d ring forward passed
* 2d ring backward passed
* fixes
* fix ring attn loss
* 2D ring backward + llama passed
* merge
* update logger
* fix typo
* rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix typo
* remove typos
* fixes
* support GPT
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [hotfix] moe hybrid parallelism benchmark & follow-up fix (#6048)
* [example] pass use_fp8_comm flag to all plugins
* [example] add mixtral benchmark
* [moe] refine assertion and check
* [moe] fix mixtral & add more tests
* [moe] consider checking dp * sp group and moe_dp_group
* [mixtral] remove gate tp & add more tests
* [deepseek] fix tp & sp for deepseek
* [mixtral] minor fix
* [deepseek] add deepseek benchmark
* [fp8] hotfix backward hook (#6053)
* [fp8] hotfix backward hook
* [fp8] hotfix pipeline loss accumulation
* [doc] update sp doc (#6055)
* update sp doc
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix the sp
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix the attn
* fix
* fix
* fix
* fix
* [zerobubble]Support ZeroBubble Pipeline (#6034)
* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;
* [feat] add dw test;
* [fix] fix weight not close;
* [update] update text;
* [feat] add test run_fwd_bwd automatic scheduling;
* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;
* [feat] add test for p & p grad;
* [feat] add comments for ZBV func;
* [fix] rm useless assign and comments;
* [fix] fix ci test; add pytest;
* [feat] add run_fwd_bwd_with_microbatch (replace input) & test; add p&p.grad assert close test & all pass;
* [feat] add apply v_schedule graph; p & p.grad assert err exist;
* [fix] update
* [feat] fix ci; add assert;
* [feat] fix poc format
* [feat] fix func name & ci; add comments;
* [fix] fix poc test; add comments in poc;
* [feat] add optim backward_b_by_grad
* [feat] fix optimizer bwd b & w; support return accum loss & output
* [feat] add fwd_bwd_step, run_fwd_only;
* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;
* [fix] fix communication_map;
* [feat] update test; rm comments;
* [fix] rm zbv in hybridplugin
* [fix] fix optim bwd;
* [fix] fix optim bwd;
* [fix] rm output.data after send fwd;
* [fix] fix bwd step if condition; remove useless comments and format info;
* [fix] fix detach output & release output;
* [fix] rm requir_grad for output;
* [fix] fix requir grad position and detach position and input&output local buffer append position;
* [feat] add memory assertation;
* [fix] fix mem check;
* [fix] mem assertation'
* [fix] fix mem assertation
* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;
* [fix] fix model zoo import;
* [fix] fix redundant detach & clone; add buffer assertation in the end;
* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;
* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;
* [fix] add testcase with microbatch 4;
* [fp8] fix missing fp8_comm flag in mixtral (#6057)
* fix
* fix
* fix
* [fp8] Disable all_gather intranode. Disable Redundant all_gather fp8 (#6059)
* all_gather only internode, fix pytest
* fix cuda arch <89 compile pytest error
* fix pytest failure
* disable all_gather_into_tensor_flat_fp8
* fix fp8 format
* fix pytest
* fix conversations
* fix chunk tuple to list
* [doc] FP8 training and communication document (#6050)
* Add FP8 training and communication document
* add fp8 docstring for plugins
* fix typo
* fix typo
* fix
* fix
* [moe] add parallel strategy for shared_expert && fix test for deepseek (#6063)
* [ColossalEval] support for vllm (#6056)
* support vllm
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* modify vllm and update readme
* run pre-commit
* remove dupilicated lines and refine code
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* update param name
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* refine code
* update readme
* refine code
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [release] update version (#6062)
* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;
* [update] update text;
* [feat] add test run_fwd_bwd automatic scheduling;
* [feat] fix poc format
* [fix] fix poc test; add comments in poc;
* [feat] add optim backward_b_by_grad
* [feat] fix optimizer bwd b & w; support return accum loss & output
* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;
* [feat] update test; rm comments;
* [fix] rm zbv in hybridplugin
* [fix] fix optim bwd;
* [fix] fix optim bwd;
* [fix] rm output.data after send fwd;
* [fix] fix bwd step if condition; remove useless comments and format info;
* [fix] fix mem check;
* [fix] fix mem assertation
* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;
* [fix] fix model zoo import;
* [feat] moehybrid support zerobubble;
* [fix] fix zerobubble pp for shardformer type input;
* [fix] fix require_grad & deallocate call;
* [fix] fix mem assert;
* [fix] fix fwd branch, fwd pass both micro_batch & internal_inputs'
* [fix] fix pipeline util func deallocate --> release_tensor_data; fix bwd_b loss bwd branch;
* [fix] fix zerobubble; support shardformer model type;
* [fix] fix test_pipeline_utils ci;
* [plugin] hybrid support zero bubble pipeline (#6060)
* hybrid support zbv
* fix
fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* Update zero_bubble_pp.py
* fix
* fix-ci
* fix
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* fix
* [zerobubble]Support ZeroBubble Pipeline (#6034)
* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;
* [feat] add dw test;
* [fix] fix weight not close;
* [update] update text;
* [feat] add test run_fwd_bwd automatic scheduling;
* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;
* [feat] add test for p & p grad;
* [feat] add comments for ZBV func;
* [fix] rm useless assign and comments;
* [fix] fix ci test; add pytest;
* [feat] add run_fwd_bwd_with_microbatch (replace input) & test; add p&p.grad assert close test & all pass;
* [feat] add apply v_schedule graph; p & p.grad assert err exist;
* [fix] update
* [feat] fix ci; add assert;
* [feat] fix poc format
* [feat] fix func name & ci; add comments;
* [fix] fix poc test; add comments in poc;
* [feat] add optim backward_b_by_grad
* [feat] fix optimizer bwd b & w; support return accum loss & output
* [feat] add fwd_bwd_step, run_fwd_only;
* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;
* [fix] fix communication_map;
* [feat] update test; rm comments;
* [fix] rm zbv in hybridplugin
* [fix] fix optim bwd;
* [fix] fix optim bwd;
* [fix] rm output.data after send fwd;
* [fix] fix bwd step if condition; remove useless comments and format info;
* [fix] fix detach output & release output;
* [fix] rm requir_grad for output;
* [fix] fix requir grad position and detach position and input&output local buffer append position;
* [feat] add memory assertation;
* [fix] fix mem check;
* [fix] mem assertation'
* [fix] fix mem assertation
* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;
* [fix] fix model zoo import;
* [fix] fix redundant detach & clone; add buffer assertation in the end;
* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;
* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;
* [fix] add testcase with microbatch 4;
* hybrid support zbv
* fix
fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update zero_bubble_pp.py
* fix
* fix-ci
* fix
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* fix
* fix
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* fix
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: duanjunwen <935724073@qq.com>
* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;
* [update] update text;
* [feat] add test run_fwd_bwd automatic scheduling;
* [feat] fix poc format
* [fix] fix poc test; add comments in poc;
* [feat] add optim backward_b_by_grad
* [feat] fix optimizer bwd b & w; support return accum loss & output
* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;
* [feat] update test; rm comments;
* [fix] fix optim bwd;
* [fix] fix optim bwd;
* [fix] rm output.data after send fwd;
* [fix] fix bwd step if condition; remove useless comments and format info;
* [fix] fix mem check;
* [fix] fix mem assertation
* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;
* [fix] fix model zoo import;
* [fix] fix mem assert;
* [fix] fix fwd branch, fwd pass both micro_batch & internal_inputs'
* [plugin] hybrid support zero bubble pipeline (#6060)
* hybrid support zbv
* fix
fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* Update zero_bubble_pp.py
* fix
* fix-ci
* fix
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* fix
* [zerobubble]Support ZeroBubble Pipeline (#6034)
* [feat] add zerobubble pp (just a frame now); add POC test for dx_dw; add test for zerobubble;
* [feat] add dw test;
* [fix] fix weight not close;
* [update] update text;
* [feat] add test run_fwd_bwd automatic scheduling;
* [feat] split communication and calculation; fix pop empty send_bwd_buffer error;
* [feat] add test for p & p grad;
* [feat] add comments for ZBV func;
* [fix] rm useless assign and comments;
* [fix] fix ci test; add pytest;
* [feat] add run_fwd_bwd_with_microbatch (replace input) & test; add p&p.grad assert close test & all pass;
* [feat] add apply v_schedule graph; p & p.grad assert err exist;
* [fix] update
* [feat] fix ci; add assert;
* [feat] fix poc format
* [feat] fix func name & ci; add comments;
* [fix] fix poc test; add comments in poc;
* [feat] add optim backward_b_by_grad
* [feat] fix optimizer bwd b & w; support return accum loss & output
* [feat] add fwd_bwd_step, run_fwd_only;
* [fix] fix optim bwd; add license for v_schedule; remove redundant attributes; fix schedule loop "while"--> "for"; add communication dict;
* [fix] fix communication_map;
* [feat] update test; rm comments;
* [fix] rm zbv in hybridplugin
* [fix] fix optim bwd;
* [fix] fix optim bwd;
* [fix] rm output.data after send fwd;
* [fix] fix bwd step if condition; remove useless comments and format info;
* [fix] fix detach output & release output;
* [fix] rm requir_grad for output;
* [fix] fix requir grad position and detach position and input&output local buffer append position;
* [feat] add memory assertation;
* [fix] fix mem check;
* [fix] mem assertation'
* [fix] fix mem assertation
* [fix] fix mem; use a new model shape; only assert mem less and equal than theo;
* [fix] fix model zoo import;
* [fix] fix redundant detach & clone; add buffer assertation in the end;
* [fix] add output_obj_grad assert None at bwd b step; replace input_obj.require_grad_ with treemap;
* [fix] update optim state dict assert (include param group & state); fix mem assert after add optim;
* [fix] add testcase with microbatch 4;
* hybrid support zbv
* fix
fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Update zero_bubble_pp.py
* fix
* fix-ci
* fix
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* fix
* fix
* fix
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* fix
* fix
* fix
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: duanjunwen <935724073@qq.com>
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* zbv support zero
* fix
* fix
* fix
---------
Co-authored-by: HangXu <hangxu0304@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: GuangyaoZhang <xjtu521@qq.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: wangbluo <2538539015@qq.com>
Co-authored-by: root <root@notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9-0.notebook-8f919155-6035-47b4-9c6f-1be133b9e2c9.colossal-ai.svc.cluster.local>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com>
2024-10-11 06:14:05 +00:00
|
|
|
def no_sync(self):
|
|
|
|
return nullcontext()
|
|
|
|
|
2024-09-26 06:11:56 +00:00
|
|
|
|
|
|
|
def assert_optim_param_groups(optim_base_param_groups, optim_pp_param_groups):
|
|
|
|
for (key_base, val_base), (key_pp, val_pp) in zip(optim_base_param_groups.items(), optim_pp_param_groups.items()):
|
|
|
|
if key_base == key_pp:
|
|
|
|
if key_base != "params":
|
|
|
|
assert val_base == val_pp
|
2024-08-22 10:25:34 +00:00
|
|
|
|
|
|
|
|
|
|
|
def get_model_numel(model: torch.nn.Module) -> Tuple[int, int]:
|
|
|
|
num_params = 0
|
|
|
|
num_params_trainable = 0
|
|
|
|
for p in model.parameters():
|
|
|
|
num_params += p.numel()
|
|
|
|
if p.requires_grad:
|
|
|
|
num_params_trainable += p.numel()
|
|
|
|
return num_params, num_params_trainable
|
|
|
|
|
|
|
|
|
2024-08-28 05:47:53 +00:00
|
|
|
# 1) Test manual v_schedule with multiple microbatch
|
2024-09-02 09:50:47 +00:00
|
|
|
@parameterize(
|
|
|
|
"test_config",
|
|
|
|
[
|
|
|
|
{
|
2024-09-04 03:31:08 +00:00
|
|
|
"batch_size": 8,
|
2024-09-02 09:50:47 +00:00
|
|
|
"tp_size": 1,
|
|
|
|
"pp_size": 4,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero_stage": 1,
|
|
|
|
"precision": "bf16",
|
2024-09-03 08:56:08 +00:00
|
|
|
"num_model_chunk": 2,
|
2024-09-02 09:50:47 +00:00
|
|
|
},
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def run_fwd_bwd_iter_input(test_config):
|
2024-08-26 11:21:56 +00:00
|
|
|
# init dist
|
|
|
|
rank = dist.get_rank()
|
2024-09-02 09:50:47 +00:00
|
|
|
pp_size = test_config["pp_size"]
|
2024-08-26 11:21:56 +00:00
|
|
|
pg_mesh = ProcessGroupMesh(pp_size)
|
2024-09-02 09:50:47 +00:00
|
|
|
num_microbatch = test_config["num_microbatches"]
|
|
|
|
num_model_chunk = test_config["num_model_chunk"]
|
2024-08-26 11:21:56 +00:00
|
|
|
# stage_manager
|
2024-09-02 09:50:47 +00:00
|
|
|
stage_manager = PipelineStageManager(
|
|
|
|
pg_mesh, pipeline_axis=0, enable_interleave=True, num_model_chunks=num_model_chunk
|
|
|
|
)
|
2024-08-26 11:21:56 +00:00
|
|
|
|
|
|
|
# schedule list
|
|
|
|
zbv_schedule = [
|
|
|
|
# stage 0
|
|
|
|
[
|
2024-08-27 09:31:38 +00:00
|
|
|
# microbatch 0
|
2024-08-26 11:21:56 +00:00
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=0),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=0, minibatch=0),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=0),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=0),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=0, minibatch=0),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=0),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=0),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=0, minibatch=0),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=0, minibatch=0),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=0),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=0),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=0, minibatch=0),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=0, minibatch=0),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=0),
|
2024-08-27 09:31:38 +00:00
|
|
|
# microbatch 1
|
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=1),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=0, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=1),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=1),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=0, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=1),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=1),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=0, minibatch=1),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=0, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=1),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=1),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=0, minibatch=1),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=0, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=1),
|
|
|
|
# microbatch 2
|
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=2),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=0, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=2),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=2),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=0, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=2),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=2),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=0, minibatch=2),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=0, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=2),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=2),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=0, minibatch=2),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=0, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=2),
|
|
|
|
# microbatch 3
|
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=3),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=0, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=3),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=3),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=0, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=3),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=3),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=0, minibatch=3),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=0, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=3),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=3),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=0, minibatch=3),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=0, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=3),
|
2024-08-26 11:21:56 +00:00
|
|
|
],
|
|
|
|
# stage 1
|
|
|
|
[
|
2024-08-27 09:31:38 +00:00
|
|
|
# microbatch 0
|
2024-08-26 11:21:56 +00:00
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=0),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=1, minibatch=0),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=0),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=0),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=1, minibatch=0),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=0),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=0),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=1, minibatch=0),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=1, minibatch=0),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=0),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=0),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=1, minibatch=0),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=1, minibatch=0),
|
2024-08-27 06:29:13 +00:00
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=0),
|
2024-08-27 09:31:38 +00:00
|
|
|
# microbatch 1
|
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=1),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=1, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=1),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=1),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=1, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=1),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=1),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=1, minibatch=1),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=1, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=1),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=1),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=1, minibatch=1),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=1, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=1),
|
|
|
|
# microbatch 2
|
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=2),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=1, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=2),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=2),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=1, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=2),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=2),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=1, minibatch=2),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=1, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=2),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=2),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=1, minibatch=2),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=1, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=2),
|
|
|
|
# microbatch 3
|
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=3),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=1, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=3),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=3),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=1, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=3),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=3),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=1, minibatch=3),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=1, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=3),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=3),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=1, minibatch=3),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=1, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=3),
|
2024-08-26 11:21:56 +00:00
|
|
|
],
|
|
|
|
# stage 2
|
|
|
|
[
|
2024-08-27 09:31:38 +00:00
|
|
|
# microbatch 0
|
2024-08-26 11:21:56 +00:00
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=0),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=2, minibatch=0),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=0),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=0),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=2, minibatch=0),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=0),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=0),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=2, minibatch=0),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=2, minibatch=0),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=0),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=0),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=2, minibatch=0),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=2, minibatch=0),
|
2024-08-27 09:31:38 +00:00
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=0),
|
|
|
|
# microbatch 1
|
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=1),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=2, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=1),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=1),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=2, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=1),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=1),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=2, minibatch=1),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=2, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=1),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=1),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=2, minibatch=1),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=2, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=1),
|
|
|
|
# microbatch 2
|
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=2),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=2, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=2),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=2),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=2, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=2),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=2),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=2, minibatch=2),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=2, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=2),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=2),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=2, minibatch=2),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=2, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=2),
|
|
|
|
# microbatch 3
|
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=3),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=2, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=3),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=3),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=2, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=3),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=3),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=2, minibatch=3),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=2, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=3),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=3),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=2, minibatch=3),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=2, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=3),
|
2024-08-26 11:21:56 +00:00
|
|
|
],
|
|
|
|
# stage 3
|
|
|
|
[
|
2024-08-27 09:31:38 +00:00
|
|
|
# microbatch 0
|
2024-08-26 11:21:56 +00:00
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=0),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=3, minibatch=0),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=0),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=0),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=3, minibatch=0),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=0),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=0),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=3, minibatch=0),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=3, minibatch=0),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=0),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=0),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=3, minibatch=0),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=3, minibatch=0),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=0),
|
2024-08-27 09:31:38 +00:00
|
|
|
# microbatch 1
|
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=1),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=3, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=1),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=1),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=3, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=1),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=1),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=3, minibatch=1),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=3, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=1),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=1),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=3, minibatch=1),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=3, minibatch=1),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=1),
|
|
|
|
# microbatch 2
|
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=2),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=3, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=2),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=2),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=3, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=2),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=2),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=3, minibatch=2),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=3, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=2),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=2),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=3, minibatch=2),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=3, minibatch=2),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=2),
|
|
|
|
# microbatch 3
|
|
|
|
# chunk 0 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=3),
|
|
|
|
ScheduledNode(type="F", chunk=0, stage=3, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=3),
|
|
|
|
# chunk 1 fwd
|
|
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=3),
|
|
|
|
ScheduledNode(type="F", chunk=1, stage=3, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=3),
|
|
|
|
# chunk 1 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=3),
|
|
|
|
ScheduledNode(type="B", chunk=1, stage=3, minibatch=3),
|
|
|
|
ScheduledNode(type="W", chunk=1, stage=3, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=3),
|
|
|
|
# chunk 0 bwd
|
|
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=3),
|
|
|
|
ScheduledNode(type="B", chunk=0, stage=3, minibatch=3),
|
|
|
|
ScheduledNode(type="W", chunk=0, stage=3, minibatch=3),
|
|
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=3),
|
2024-08-26 11:21:56 +00:00
|
|
|
],
|
|
|
|
]
|
|
|
|
|
|
|
|
scheduler = ZeroBubbleVPipeScheduler(
|
2024-09-02 09:50:47 +00:00
|
|
|
schedule=zbv_schedule, # hint: send whole schedule or local schedule only ?
|
2024-08-26 11:21:56 +00:00
|
|
|
stage_manager=stage_manager,
|
|
|
|
num_model_chunks=pp_size,
|
2024-08-27 09:31:38 +00:00
|
|
|
num_microbatch=num_microbatch,
|
2024-08-26 11:21:56 +00:00
|
|
|
overlap_p2p=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
# loss func
|
|
|
|
def criterion(x, *args, **kwargs):
|
|
|
|
return (x * x).mean()
|
|
|
|
|
|
|
|
# init model and input
|
2024-08-27 09:31:38 +00:00
|
|
|
batch_size = 4
|
2024-08-26 11:21:56 +00:00
|
|
|
num_layers = 8
|
|
|
|
in_dim = out_dim = 8
|
2024-08-27 06:37:26 +00:00
|
|
|
print(f"Before init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};")
|
2024-08-26 11:21:56 +00:00
|
|
|
model = MlpModel(in_dim=in_dim, out_dim=out_dim, num_layers=num_layers).to(rank)
|
2024-08-27 09:31:38 +00:00
|
|
|
data_iter = [torch.rand(batch_size, in_dim, out_dim, requires_grad=True).to(rank)]
|
2024-08-26 11:21:56 +00:00
|
|
|
|
2024-08-27 10:29:39 +00:00
|
|
|
input_base = [t.clone() for t in data_iter]
|
2024-08-27 06:37:26 +00:00
|
|
|
model_base = deepcopy(model)
|
2024-08-26 11:21:56 +00:00
|
|
|
|
|
|
|
if rank == 0:
|
|
|
|
# layer 0 & 7 to chunk 0 on rank0
|
|
|
|
local_chunk = torch.nn.ModuleList().to(rank)
|
|
|
|
for idx, sub_model in enumerate(model.layers):
|
|
|
|
if idx == 0 or idx == 7:
|
|
|
|
local_chunk.append(sub_model)
|
|
|
|
elif rank == 1:
|
|
|
|
# layer 1 & 6 to chunk 1 on rank1
|
|
|
|
local_chunk = torch.nn.ModuleList().to(rank)
|
|
|
|
for idx, sub_model in enumerate(model.layers):
|
|
|
|
if idx == 1 or idx == 6:
|
|
|
|
local_chunk.append(sub_model)
|
|
|
|
elif rank == 2:
|
|
|
|
# layer 2 & 5 to chunk 2 on rank2
|
|
|
|
local_chunk = torch.nn.ModuleList().to(rank)
|
|
|
|
for idx, sub_model in enumerate(model.layers):
|
|
|
|
if idx == 2 or idx == 5:
|
|
|
|
local_chunk.append(sub_model)
|
|
|
|
else:
|
|
|
|
# layer 3 & 4 to chunk 3 on rank3
|
2024-09-02 11:19:42 +00:00
|
|
|
local_chunk = torch.nn.ModuleList().to(rank)
|
2024-08-26 11:21:56 +00:00
|
|
|
for idx, sub_model in enumerate(model.layers):
|
|
|
|
if idx == 3 or idx == 4:
|
|
|
|
local_chunk.append(sub_model)
|
2024-09-02 09:50:47 +00:00
|
|
|
# init optimizer
|
|
|
|
optimizer_base = torch.optim.SGD(model_base.parameters(), lr=1e-5)
|
|
|
|
optimizer_pp = OptimizerWrapper(torch.optim.SGD(local_chunk.parameters(), lr=1e-5))
|
2024-08-27 10:29:39 +00:00
|
|
|
|
|
|
|
print(
|
|
|
|
f"After init Model & input: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};"
|
|
|
|
)
|
|
|
|
|
|
|
|
torch.cuda.synchronize()
|
2024-09-02 09:50:47 +00:00
|
|
|
result = scheduler.forward_backward_step(
|
2024-08-27 10:29:39 +00:00
|
|
|
model_chunk=local_chunk,
|
|
|
|
data_iter=iter(data_iter),
|
|
|
|
criterion=criterion,
|
2024-09-02 09:50:47 +00:00
|
|
|
optimizer=optimizer_pp,
|
|
|
|
return_loss=True,
|
|
|
|
return_outputs=True,
|
2024-08-27 10:29:39 +00:00
|
|
|
)
|
|
|
|
|
2024-09-02 09:50:47 +00:00
|
|
|
optimizer_pp.step()
|
|
|
|
|
2024-08-27 10:29:39 +00:00
|
|
|
##########################
|
|
|
|
# Fwd bwd for base
|
|
|
|
##########################
|
|
|
|
# fwd & bwd
|
|
|
|
output_base = model_base(input_base[0])
|
2024-08-27 06:37:26 +00:00
|
|
|
loss_base = criterion(output_base)
|
|
|
|
loss_base.backward()
|
2024-09-02 09:50:47 +00:00
|
|
|
optimizer_base.step()
|
2024-08-27 06:37:26 +00:00
|
|
|
print(f"After base fwd & bwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
|
|
|
|
##########################
|
|
|
|
# assert weight
|
|
|
|
##########################
|
|
|
|
if rank == 0:
|
|
|
|
# layer 0
|
|
|
|
assert_close(local_chunk[0].weight, model_base.layers[0].weight)
|
|
|
|
assert_close(local_chunk[0].weight.grad, model_base.layers[0].weight.grad)
|
|
|
|
# layer 7
|
|
|
|
assert_close(local_chunk[1].weight, model_base.layers[7].weight)
|
|
|
|
assert_close(local_chunk[1].weight.grad, model_base.layers[7].weight.grad)
|
|
|
|
if rank == 1:
|
|
|
|
# layer 1
|
|
|
|
assert_close(local_chunk[0].weight, model_base.layers[1].weight)
|
|
|
|
assert_close(local_chunk[0].weight.grad, model_base.layers[1].weight.grad)
|
|
|
|
# layer 6
|
|
|
|
assert_close(local_chunk[1].weight, model_base.layers[6].weight)
|
|
|
|
assert_close(local_chunk[1].weight.grad, model_base.layers[6].weight.grad)
|
|
|
|
if rank == 2:
|
|
|
|
# layer 2
|
|
|
|
assert_close(local_chunk[0].weight, model_base.layers[2].weight)
|
|
|
|
assert_close(local_chunk[0].weight.grad, model_base.layers[2].weight.grad)
|
|
|
|
# layer 5
|
|
|
|
assert_close(local_chunk[1].weight, model_base.layers[5].weight)
|
|
|
|
assert_close(local_chunk[1].weight.grad, model_base.layers[5].weight.grad)
|
|
|
|
if rank == 3:
|
|
|
|
# layer 3
|
|
|
|
assert_close(local_chunk[0].weight, model_base.layers[3].weight)
|
|
|
|
assert_close(local_chunk[0].weight.grad, model_base.layers[3].weight.grad)
|
|
|
|
# layer 4
|
|
|
|
assert_close(local_chunk[1].weight, model_base.layers[4].weight)
|
|
|
|
assert_close(local_chunk[1].weight.grad, model_base.layers[4].weight.grad)
|
|
|
|
|
2024-08-26 11:21:56 +00:00
|
|
|
|
2024-09-02 09:50:47 +00:00
|
|
|
# 2) add optimizer base 1)
|
|
|
|
@parameterize(
|
|
|
|
"test_config",
|
|
|
|
[
|
|
|
|
{
|
2024-09-04 03:31:08 +00:00
|
|
|
"batch_size": 8,
|
2024-09-02 09:50:47 +00:00
|
|
|
"tp_size": 1,
|
|
|
|
"pp_size": 4,
|
|
|
|
"num_microbatches": 4,
|
|
|
|
"zero_stage": 1,
|
|
|
|
"precision": "bf16",
|
2024-09-03 08:56:08 +00:00
|
|
|
"num_model_chunk": 2,
|
2024-09-02 09:50:47 +00:00
|
|
|
},
|
2024-09-18 07:51:54 +00:00
|
|
|
{
|
|
|
|
"batch_size": 8,
|
|
|
|
"tp_size": 1,
|
|
|
|
"pp_size": 4,
|
|
|
|
"num_microbatches": 8,
|
|
|
|
"zero_stage": 1,
|
|
|
|
"precision": "bf16",
|
|
|
|
"num_model_chunk": 2,
|
|
|
|
},
|
2024-09-02 09:50:47 +00:00
|
|
|
],
|
|
|
|
)
|
|
|
|
def run_fwd_bwd_vschedule_with_optim(test_config):
|
2024-08-29 03:16:59 +00:00
|
|
|
# init dist
|
|
|
|
rank = dist.get_rank()
|
2024-09-02 09:50:47 +00:00
|
|
|
pp_size = test_config["pp_size"]
|
2024-08-29 03:16:59 +00:00
|
|
|
pg_mesh = ProcessGroupMesh(pp_size)
|
2024-09-02 09:50:47 +00:00
|
|
|
num_microbatch = test_config["num_microbatches"]
|
|
|
|
num_model_chunk = test_config["num_model_chunk"]
|
2024-08-29 03:16:59 +00:00
|
|
|
# stage_manager
|
|
|
|
stage_manager = PipelineStageManager(
|
2024-09-26 06:11:56 +00:00
|
|
|
pg_mesh, pipeline_axis=0, enable_interleave=True, num_model_chunks=num_model_chunk, use_zbv=True
|
2024-08-29 03:16:59 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
h, a, s = 4096, 32, 1024
|
|
|
|
mem_f = 34 * h + 5 * a * s
|
|
|
|
mem_w = -32 * h
|
|
|
|
mem_b = -mem_w - mem_f
|
|
|
|
graph = PipelineGraph(
|
2024-09-02 09:50:47 +00:00
|
|
|
n_stage=pp_size,
|
2024-08-29 03:16:59 +00:00
|
|
|
n_micro=num_microbatch,
|
2024-08-30 02:47:52 +00:00
|
|
|
f_cost=1,
|
|
|
|
b_cost=1,
|
|
|
|
w_cost=1,
|
|
|
|
c_cost=1,
|
2024-08-29 03:16:59 +00:00
|
|
|
f_mem=mem_f,
|
|
|
|
b_mem=mem_b,
|
|
|
|
w_mem=mem_w,
|
|
|
|
# max_mem=mem_f * (p * 2 + m_offset),
|
|
|
|
)
|
|
|
|
|
|
|
|
zbv_schedule = graph.get_v_schedule()
|
|
|
|
|
|
|
|
scheduler = ZeroBubbleVPipeScheduler(
|
2024-09-02 09:50:47 +00:00
|
|
|
schedule=zbv_schedule, # hint: send whole schedule or local schedule only ?
|
2024-08-29 03:16:59 +00:00
|
|
|
stage_manager=stage_manager,
|
|
|
|
num_model_chunks=num_model_chunk,
|
|
|
|
num_microbatch=num_microbatch,
|
|
|
|
overlap_p2p=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
# init loss func
|
|
|
|
def criterion(x, *args, **kwargs):
|
2024-09-18 07:14:34 +00:00
|
|
|
x = x["hidden_states"]
|
|
|
|
return (x * x).mean()
|
|
|
|
|
|
|
|
def criterion_base(x, *args, **kwargs):
|
2024-08-29 03:16:59 +00:00
|
|
|
return (x * x).mean()
|
|
|
|
|
|
|
|
# init model and input
|
2024-09-02 09:50:47 +00:00
|
|
|
batch_size = test_config["batch_size"]
|
2024-08-29 03:16:59 +00:00
|
|
|
num_layers = 8
|
|
|
|
assert num_layers % num_model_chunk == 0, f"Model with {num_layers} layer can not dist on {num_model_chunk} chunk"
|
2024-09-23 05:55:16 +00:00
|
|
|
in_dim = out_dim = 1024
|
2024-09-04 06:34:18 +00:00
|
|
|
before_init_memory = torch.cuda.memory_allocated() / 1024**3
|
|
|
|
print(f"Before init Model: {before_init_memory :.3f} GB on device {stage_manager.get_rank()};")
|
2024-08-29 03:16:59 +00:00
|
|
|
model = MlpModel(in_dim=in_dim, out_dim=out_dim, num_layers=num_layers).to(rank)
|
2024-09-20 07:34:43 +00:00
|
|
|
data_iter = {"data": torch.rand(batch_size, in_dim, out_dim, requires_grad=True).to(rank)}
|
2024-09-18 07:14:34 +00:00
|
|
|
input_base = {k: v.clone() for k, v in data_iter.items()}
|
2024-08-29 03:16:59 +00:00
|
|
|
model_base = deepcopy(model)
|
2024-09-26 06:11:56 +00:00
|
|
|
model_pp = deepcopy(model)
|
2024-09-25 06:15:45 +00:00
|
|
|
layers_per_stage = stage_manager.distribute_layers(len(model.layers))
|
|
|
|
stage_manager.stage_indices = stage_manager.get_stage_index(layers_per_stage)
|
2024-08-29 03:16:59 +00:00
|
|
|
|
2024-09-26 06:11:56 +00:00
|
|
|
model_pp._forward = model_pp.forward
|
2024-09-26 09:45:44 +00:00
|
|
|
|
2024-09-26 06:11:56 +00:00
|
|
|
model_pp.forward = partial(model_pp._forward, stage_mgr=stage_manager)
|
2024-08-29 03:16:59 +00:00
|
|
|
|
|
|
|
# init optimizer
|
2024-09-09 09:27:13 +00:00
|
|
|
optimizer_base = torch.optim.SGD(model_base.parameters(), momentum=0.1, lr=1e-5)
|
2024-09-26 06:11:56 +00:00
|
|
|
optimizer_pp = OptimizerWrapper(torch.optim.SGD(model_pp.parameters(), momentum=0.1, lr=1e-5))
|
2024-08-29 03:16:59 +00:00
|
|
|
|
2024-09-04 06:34:18 +00:00
|
|
|
after_init_memory = torch.cuda.memory_allocated() / 1024**3
|
|
|
|
print(f"After init Model & input: {after_init_memory :.5f} GB on device {stage_manager.get_rank()};")
|
2024-08-29 03:16:59 +00:00
|
|
|
|
|
|
|
torch.cuda.synchronize()
|
2024-08-30 02:47:52 +00:00
|
|
|
result = scheduler.forward_backward_step(
|
2024-09-26 06:11:56 +00:00
|
|
|
model_chunk=model_pp,
|
2024-09-18 07:14:34 +00:00
|
|
|
data_iter=iter([data_iter]),
|
2024-08-29 03:16:59 +00:00
|
|
|
criterion=criterion,
|
|
|
|
optimizer=optimizer_pp,
|
2024-08-29 08:54:45 +00:00
|
|
|
return_loss=True,
|
|
|
|
return_outputs=True,
|
2024-08-29 03:16:59 +00:00
|
|
|
)
|
|
|
|
|
2024-08-29 08:54:45 +00:00
|
|
|
optimizer_pp.step()
|
|
|
|
|
2024-09-09 05:41:39 +00:00
|
|
|
after_pp_step_memory = torch.cuda.memory_allocated() / 1024**3
|
2024-09-04 06:34:18 +00:00
|
|
|
|
|
|
|
# assert memory
|
|
|
|
if rank != 0:
|
2024-09-19 08:27:47 +00:00
|
|
|
# w.grad: hid_dim * hid_dim * microbatch * 4(fp32) * 2 (2 layer in each stage) / 1024**3
|
|
|
|
# output: hid_dim * hid_dim * microbatch * 4(fp32) / 1024**3
|
2024-09-19 07:47:01 +00:00
|
|
|
# optim: state hid_dim * hid_dim * 4(fp32) * 2 (2 layer in each stage) / 1024**3
|
2024-09-19 08:27:47 +00:00
|
|
|
print(
|
|
|
|
f" num_microbatch {num_microbatch} rank {rank}: {(after_pp_step_memory - after_init_memory)} <= {(in_dim * in_dim * 4 * 5 * batch_size / 1024**3)}"
|
|
|
|
)
|
|
|
|
assert (after_pp_step_memory - after_init_memory) <= (in_dim * in_dim * 4 * 5 * batch_size / 1024**3)
|
2024-09-04 06:34:18 +00:00
|
|
|
else:
|
2024-09-04 10:57:38 +00:00
|
|
|
# rank0 will also hold output;
|
2024-09-09 05:41:39 +00:00
|
|
|
print(
|
2024-09-19 08:27:47 +00:00
|
|
|
f" num_microbatch {num_microbatch} rank {rank}: {round((after_pp_step_memory - after_init_memory), 5)} <= {round((in_dim * in_dim * 4 * 5 * batch_size / 1024**3 + batch_size * in_dim * in_dim * 4 / 1024**3), 5)}"
|
|
|
|
)
|
|
|
|
assert round((after_pp_step_memory - after_init_memory), 5) <= round(
|
|
|
|
(in_dim * in_dim * 4 * 5 * batch_size / 1024**3 + batch_size * in_dim * in_dim * 4 / 1024**3), 5
|
2024-09-09 05:41:39 +00:00
|
|
|
)
|
2024-09-09 08:04:28 +00:00
|
|
|
|
2024-08-29 03:16:59 +00:00
|
|
|
##########################
|
|
|
|
# Fwd bwd for base
|
|
|
|
##########################
|
|
|
|
# fwd & bwd
|
2024-09-26 06:11:56 +00:00
|
|
|
# output_base = model_base(input_base["data"])
|
|
|
|
output_base = model_base.forward(data=input_base["data"])
|
2024-09-18 07:14:34 +00:00
|
|
|
loss_base = criterion_base(output_base)
|
2024-08-29 03:16:59 +00:00
|
|
|
loss_base.backward()
|
|
|
|
optimizer_base.step()
|
|
|
|
|
2024-08-29 08:54:45 +00:00
|
|
|
##########################
|
|
|
|
# assert loss & output
|
|
|
|
##########################
|
|
|
|
# only chunk 1 stage 0 hold loss and output
|
|
|
|
if rank == 0:
|
|
|
|
assert_close(result["loss"], loss_base)
|
2024-09-18 07:14:34 +00:00
|
|
|
assert_close(result["outputs"]["hidden_states"], output_base)
|
2024-08-29 08:54:45 +00:00
|
|
|
|
2024-09-26 06:11:56 +00:00
|
|
|
# ##########################
|
|
|
|
# # assert weight & optim state
|
|
|
|
# ##########################
|
|
|
|
optim_base_state = optimizer_base.state_dict()["state"]
|
|
|
|
optim_pp_state = optimizer_pp.state_dict()["state"]
|
|
|
|
optim_base_param_groups = optimizer_base.state_dict()["param_groups"][0]
|
|
|
|
optim_pp_param_groups = optimizer_pp.state_dict()["param_groups"][0]
|
|
|
|
|
2024-08-29 03:16:59 +00:00
|
|
|
if rank == 0:
|
|
|
|
# layer 0
|
2024-09-26 06:11:56 +00:00
|
|
|
assert_close(model_pp.layers[0].weight, model_base.layers[0].weight)
|
|
|
|
assert_close(model_pp.layers[0].weight.grad, model_base.layers[0].weight.grad)
|
|
|
|
assert_close(optim_pp_state[0]["momentum_buffer"], optim_base_state[0]["momentum_buffer"])
|
2024-08-29 03:16:59 +00:00
|
|
|
# layer 7
|
2024-09-26 06:11:56 +00:00
|
|
|
assert_close(model_pp.layers[7].weight, model_base.layers[7].weight)
|
|
|
|
assert_close(model_pp.layers[7].weight.grad, model_base.layers[7].weight.grad)
|
|
|
|
assert_close(optim_pp_state[7]["momentum_buffer"], optim_base_state[7]["momentum_buffer"])
|
2024-08-29 03:16:59 +00:00
|
|
|
if rank == 1:
|
|
|
|
# layer 1
|
2024-09-26 06:11:56 +00:00
|
|
|
assert_close(model_pp.layers[1].weight, model_base.layers[1].weight)
|
|
|
|
assert_close(model_pp.layers[1].weight.grad, model_base.layers[1].weight.grad)
|
|
|
|
assert_close(optim_pp_state[1]["momentum_buffer"], optim_base_state[1]["momentum_buffer"])
|
2024-08-29 03:16:59 +00:00
|
|
|
# layer 6
|
2024-09-26 06:11:56 +00:00
|
|
|
assert_close(model_pp.layers[6].weight, model_base.layers[6].weight)
|
|
|
|
assert_close(model_pp.layers[6].weight.grad, model_base.layers[6].weight.grad)
|
|
|
|
assert_close(optim_pp_state[6]["momentum_buffer"], optim_base_state[6]["momentum_buffer"])
|
2024-08-29 03:16:59 +00:00
|
|
|
if rank == 2:
|
|
|
|
# layer 2
|
2024-09-26 06:11:56 +00:00
|
|
|
assert_close(model_pp.layers[2].weight, model_base.layers[2].weight)
|
|
|
|
assert_close(model_pp.layers[2].weight.grad, model_base.layers[2].weight.grad)
|
|
|
|
assert_close(optim_pp_state[2]["momentum_buffer"], optim_base_state[2]["momentum_buffer"])
|
2024-08-29 03:16:59 +00:00
|
|
|
# layer 5
|
2024-09-26 06:11:56 +00:00
|
|
|
assert_close(model_pp.layers[5].weight, model_base.layers[5].weight)
|
|
|
|
assert_close(model_pp.layers[5].weight.grad, model_base.layers[5].weight.grad)
|
|
|
|
assert_close(optim_pp_state[5]["momentum_buffer"], optim_base_state[5]["momentum_buffer"])
|
2024-08-29 03:16:59 +00:00
|
|
|
if rank == 3:
|
|
|
|
# layer 3
|
2024-09-26 06:11:56 +00:00
|
|
|
assert_close(model_pp.layers[3].weight, model_base.layers[3].weight)
|
|
|
|
assert_close(model_pp.layers[3].weight.grad, model_base.layers[3].weight.grad)
|
|
|
|
assert_close(optim_pp_state[3]["momentum_buffer"], optim_base_state[3]["momentum_buffer"])
|
2024-08-29 03:16:59 +00:00
|
|
|
# layer 4
|
2024-09-26 06:11:56 +00:00
|
|
|
assert_close(model_pp.layers[4].weight, model_base.layers[4].weight)
|
|
|
|
assert_close(model_pp.layers[4].weight.grad, model_base.layers[4].weight.grad)
|
|
|
|
assert_close(optim_pp_state[4]["momentum_buffer"], optim_base_state[4]["momentum_buffer"])
|
2024-08-29 03:16:59 +00:00
|
|
|
|
2024-09-26 06:11:56 +00:00
|
|
|
# assert optim param_groups
|
|
|
|
assert_optim_param_groups(optim_base_param_groups, optim_pp_param_groups)
|
2024-09-09 09:27:13 +00:00
|
|
|
|
2024-08-28 05:47:53 +00:00
|
|
|
|
2024-09-18 07:14:34 +00:00
|
|
|
@parameterize(
|
2024-09-29 08:33:55 +00:00
|
|
|
"config",
|
2024-09-18 07:14:34 +00:00
|
|
|
[
|
2024-11-11 11:34:29 +00:00
|
|
|
# Pass
|
2024-11-05 05:55:42 +00:00
|
|
|
(1, 2, 1, 1, 2),
|
2024-11-11 11:34:29 +00:00
|
|
|
(1, 1, 2, 2, 1),
|
|
|
|
(1, 2, 1, 2, 1),
|
2024-11-12 07:28:49 +00:00
|
|
|
(1, 2, 2, 1, 1),
|
|
|
|
# # TODO: adapt mixtral with no TP Linear
|
|
|
|
(0, 1, 4, 1, 1),
|
2024-09-18 07:14:34 +00:00
|
|
|
],
|
|
|
|
)
|
2024-09-29 08:33:55 +00:00
|
|
|
def run_with_booster_moehybridplugin(config: Tuple[int, ...]):
|
2024-09-29 09:59:41 +00:00
|
|
|
test_config = config
|
2024-09-29 08:33:55 +00:00
|
|
|
stage, ep_size, pp_size, tp_size, sp_size = config
|
|
|
|
num_microbatches = pp_size
|
|
|
|
dist.get_world_size()
|
|
|
|
rank = dist.get_rank()
|
|
|
|
dtype, precision = torch.float16, "fp16"
|
|
|
|
torch.cuda.set_device(dist.get_rank())
|
|
|
|
|
|
|
|
########
|
|
|
|
# init base model
|
|
|
|
########
|
|
|
|
assert pp_size <= NUM_LAYERS, "pp_size should be less than or equal to NUM_LAYERS"
|
|
|
|
config = MixtralConfig(
|
|
|
|
hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
|
|
|
|
intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
|
|
|
|
num_hidden_layers=NUM_LAYERS,
|
|
|
|
num_attention_heads=NUM_HEADS,
|
|
|
|
num_key_value_heads=NUM_HEADS,
|
|
|
|
num_local_experts=NUM_EXPERTS,
|
|
|
|
num_experts_per_tok=TOP_K,
|
|
|
|
attn_implementation="flash_attention_2",
|
|
|
|
)
|
|
|
|
|
|
|
|
# init model with the same seed
|
|
|
|
seed_all(10086)
|
|
|
|
|
|
|
|
torch_model = MixtralModel(config).to(dtype).cuda()
|
2024-10-10 06:57:35 +00:00
|
|
|
# TODO: Support MixtralForCausalLM
|
|
|
|
# torch_model = MixtralForCausalLM(config).to(dtype).cuda()
|
2024-09-29 08:33:55 +00:00
|
|
|
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
|
|
|
|
# init schedule
|
|
|
|
h, a, s = config.hidden_size, config.num_attention_heads, 1024
|
|
|
|
mem_f = 34 * h + 5 * a * s
|
|
|
|
mem_w = -32 * h
|
|
|
|
mem_b = -mem_w - mem_f
|
|
|
|
graph = PipelineGraph(
|
|
|
|
n_stage=pp_size,
|
|
|
|
n_micro=num_microbatches,
|
|
|
|
f_cost=1,
|
|
|
|
b_cost=1,
|
|
|
|
w_cost=1,
|
|
|
|
c_cost=1,
|
|
|
|
f_mem=mem_f,
|
|
|
|
b_mem=mem_b,
|
|
|
|
w_mem=mem_w,
|
|
|
|
# max_mem=mem_f * (p * 2 + m_offset),
|
|
|
|
)
|
|
|
|
|
|
|
|
zbv_schedule = graph.get_v_schedule()
|
|
|
|
|
|
|
|
# init MoeHybridPlugin
|
|
|
|
plugin = MoeHybridParallelPlugin(
|
|
|
|
pp_size=pp_size,
|
|
|
|
num_microbatches=pp_size,
|
|
|
|
tp_size=tp_size,
|
|
|
|
sp_size=sp_size,
|
|
|
|
ep_size=ep_size,
|
|
|
|
zero_stage=stage,
|
|
|
|
enable_sequence_parallelism=sp_size > 1,
|
|
|
|
sequence_parallelism_mode="all_to_all" if sp_size > 1 else None,
|
|
|
|
overlap_communication=False,
|
|
|
|
initial_scale=1,
|
|
|
|
precision=precision,
|
|
|
|
find_unused_parameters=True,
|
|
|
|
pp_style="zbv",
|
|
|
|
scheduler_nodes=zbv_schedule,
|
|
|
|
num_model_chunks=2,
|
|
|
|
)
|
|
|
|
|
|
|
|
dp_size = plugin.dp_size
|
|
|
|
|
|
|
|
booster = Booster(plugin=plugin)
|
|
|
|
|
|
|
|
########
|
|
|
|
# init pp model
|
|
|
|
########
|
|
|
|
|
|
|
|
parallel_model = deepcopy(torch_model)
|
|
|
|
parallel_optimizer = torch.optim.SGD(parallel_model.parameters(), lr=1)
|
|
|
|
parallel_model, parallel_optimizer, _, _, _ = booster.boost(parallel_model, parallel_optimizer)
|
|
|
|
# create different input along dp axis
|
|
|
|
seed_all(1453 + rank)
|
|
|
|
|
|
|
|
torch_model.train()
|
|
|
|
parallel_model.train()
|
|
|
|
for _ in range(2):
|
|
|
|
# gen random input
|
|
|
|
input_embeddings = torch.rand(
|
|
|
|
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
|
|
|
|
).cuda()
|
|
|
|
dist.all_reduce(
|
|
|
|
input_embeddings, group=plugin.pp_group
|
|
|
|
) # pp inputs except the first stage doesn't matter, but need to be replicate for torch model check
|
|
|
|
|
|
|
|
dist.all_reduce(input_embeddings, group=plugin.tp_group) # tp group duplicate input
|
|
|
|
dist.all_reduce(input_embeddings, group=plugin.sp_group) # sp group duplicate input
|
|
|
|
|
|
|
|
# run the model with hybrid parallel
|
|
|
|
if booster.plugin.stage_manager is not None:
|
|
|
|
# for test with pp
|
|
|
|
data_iter = iter([{"inputs_embeds": input_embeddings}])
|
|
|
|
sharded_output = booster.execute_pipeline(
|
|
|
|
data_iter,
|
|
|
|
parallel_model,
|
|
|
|
lambda x, y: x.last_hidden_state.mean(),
|
|
|
|
parallel_optimizer,
|
|
|
|
return_loss=True,
|
|
|
|
return_outputs=True,
|
|
|
|
)
|
|
|
|
# stage 0 chunk 0
|
2024-09-29 09:59:41 +00:00
|
|
|
if (
|
|
|
|
booster.plugin.stage_manager.is_first_stage(ignore_chunk=True)
|
|
|
|
and rank == dist.get_process_group_ranks(plugin.pp_group)[0]
|
|
|
|
):
|
2024-09-29 08:33:55 +00:00
|
|
|
parallel_output = sharded_output["loss"]
|
2024-09-29 09:59:41 +00:00
|
|
|
else:
|
|
|
|
parallel_output = torch.tensor(12345.0, device="cuda")
|
2024-11-12 07:28:49 +00:00
|
|
|
print(f"rank {dist.get_rank()} parallel_output {parallel_output}")
|
2024-09-29 09:59:41 +00:00
|
|
|
# broadcast along pp axis
|
|
|
|
dist.broadcast(parallel_output, src=dist.get_process_group_ranks(plugin.pp_group)[0], group=plugin.pp_group)
|
2024-09-29 08:33:55 +00:00
|
|
|
|
|
|
|
else:
|
|
|
|
# for test without pp
|
|
|
|
parallel_output = parallel_model(inputs_embeds=input_embeddings.to(dtype)).last_hidden_state.mean()
|
|
|
|
parallel_optimizer.backward(parallel_output)
|
|
|
|
parallel_optimizer.step()
|
|
|
|
parallel_optimizer.zero_grad()
|
2024-09-29 09:59:41 +00:00
|
|
|
dist.all_reduce(parallel_output, group=plugin.dp_group)
|
2024-09-29 08:33:55 +00:00
|
|
|
|
|
|
|
# ===================================================================================
|
|
|
|
# run normal model with all dp(different) inputs
|
2024-10-15 06:26:01 +00:00
|
|
|
all_inputs = [input_embeddings.clone() for _ in range(dp_size)]
|
2024-09-29 08:33:55 +00:00
|
|
|
dist.all_gather(all_inputs, input_embeddings, group=plugin.dp_group)
|
|
|
|
torch_output_sum = 0
|
|
|
|
for input_data_ in all_inputs:
|
|
|
|
torch_output = torch_model(inputs_embeds=input_data_.to(dtype)).last_hidden_state.mean()
|
|
|
|
torch_output.backward()
|
|
|
|
torch_output_sum += torch_output.detach()
|
|
|
|
# avg dp grads follows zero optimizer
|
|
|
|
for p in torch_model.parameters():
|
|
|
|
if p.grad is not None:
|
|
|
|
p.grad /= dp_size
|
|
|
|
torch_optimizer.step()
|
|
|
|
torch_optimizer.zero_grad()
|
2024-09-29 09:59:41 +00:00
|
|
|
assert_loose_close(parallel_output, torch_output_sum, dtype=dtype)
|
|
|
|
print(f"rank {dist.get_rank()} config {test_config} test passed")
|
2024-10-14 07:38:02 +00:00
|
|
|
clear_layout_converter()
|
|
|
|
Randomizer.reset_index()
|
|
|
|
torch.cuda.empty_cache()
|
2024-08-30 02:47:52 +00:00
|
|
|
|
|
|
|
|
2024-10-16 03:25:04 +00:00
|
|
|
@parameterize(
|
|
|
|
"config",
|
|
|
|
[
|
2024-11-11 08:54:39 +00:00
|
|
|
# Pass
|
|
|
|
(1, 2, 2, 1),
|
|
|
|
(1, 2, 1, 2),
|
|
|
|
(1, 1, 2, 2),
|
2024-11-12 07:28:49 +00:00
|
|
|
# TODO: support overlap p2p in pp4
|
|
|
|
(1, 4, 1, 1),
|
2024-10-16 03:25:04 +00:00
|
|
|
],
|
|
|
|
)
|
|
|
|
def run_with_booster_hybridplugin(config: Tuple[int, ...]):
|
|
|
|
stage, pp_size, tp_size, sp_size = config
|
|
|
|
num_microbatches = pp_size
|
|
|
|
dist.get_world_size()
|
|
|
|
rank = dist.get_rank()
|
|
|
|
dtype, precision = torch.float16, "fp16"
|
|
|
|
torch.cuda.set_device(dist.get_rank())
|
|
|
|
|
|
|
|
########
|
|
|
|
# init base model
|
|
|
|
########
|
|
|
|
assert pp_size <= NUM_LAYERS, "pp_size should be less than or equal to NUM_LAYERS"
|
|
|
|
config = LlamaConfig(
|
|
|
|
hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
|
|
|
|
intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
|
|
|
|
num_hidden_layers=NUM_LAYERS,
|
|
|
|
num_attention_heads=NUM_HEADS,
|
|
|
|
num_key_value_heads=NUM_HEADS,
|
|
|
|
attn_implementation="flash_attention_2",
|
|
|
|
)
|
|
|
|
|
|
|
|
# init model with the same seed
|
|
|
|
seed_all(10086)
|
|
|
|
|
|
|
|
torch_model = LlamaModel(config).to(dtype).cuda()
|
|
|
|
# TODO: Support MixtralForCausalLM
|
|
|
|
# torch_model = MixtralForCausalLM(config).to(dtype).cuda()
|
|
|
|
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
|
|
|
|
# init schedule
|
|
|
|
h, a, s = config.hidden_size, config.num_attention_heads, 1024
|
|
|
|
mem_f = 34 * h + 5 * a * s
|
|
|
|
mem_w = -32 * h
|
|
|
|
mem_b = -mem_w - mem_f
|
|
|
|
graph = PipelineGraph(
|
|
|
|
n_stage=pp_size,
|
|
|
|
n_micro=num_microbatches,
|
|
|
|
f_cost=1,
|
|
|
|
b_cost=1,
|
|
|
|
w_cost=1,
|
|
|
|
c_cost=1,
|
|
|
|
f_mem=mem_f,
|
|
|
|
b_mem=mem_b,
|
|
|
|
w_mem=mem_w,
|
|
|
|
)
|
|
|
|
|
|
|
|
zbv_schedule = graph.get_v_schedule()
|
|
|
|
|
2024-10-24 07:30:19 +00:00
|
|
|
# init HybridParallelPlugin
|
2024-10-16 03:25:04 +00:00
|
|
|
plugin = HybridParallelPlugin(
|
|
|
|
pp_size=pp_size,
|
|
|
|
num_microbatches=pp_size,
|
|
|
|
tp_size=tp_size,
|
|
|
|
sp_size=sp_size,
|
|
|
|
zero_stage=stage,
|
|
|
|
enable_sequence_parallelism=sp_size > 1,
|
|
|
|
sequence_parallelism_mode="all_to_all" if sp_size > 1 else None,
|
|
|
|
overlap_communication=False,
|
|
|
|
initial_scale=1,
|
|
|
|
precision=precision,
|
|
|
|
find_unused_parameters=True,
|
|
|
|
pp_style="zbv",
|
|
|
|
scheduler_nodes=zbv_schedule,
|
|
|
|
num_model_chunks=2,
|
|
|
|
)
|
|
|
|
|
|
|
|
dp_size = plugin.dp_size
|
|
|
|
|
|
|
|
booster = Booster(plugin=plugin)
|
|
|
|
|
|
|
|
########
|
|
|
|
# init pp model
|
|
|
|
########
|
|
|
|
|
|
|
|
parallel_model = deepcopy(torch_model)
|
|
|
|
parallel_optimizer = torch.optim.SGD(parallel_model.parameters(), lr=1)
|
|
|
|
parallel_model, parallel_optimizer, _, _, _ = booster.boost(parallel_model, parallel_optimizer)
|
|
|
|
# create different input along dp axis
|
|
|
|
seed_all(1453 + rank)
|
|
|
|
|
|
|
|
torch_model.train()
|
|
|
|
parallel_model.train()
|
2024-10-16 03:58:50 +00:00
|
|
|
for _ in range(2):
|
2024-10-16 03:25:04 +00:00
|
|
|
# gen random input
|
2024-10-16 03:58:50 +00:00
|
|
|
input_embeddings = torch.rand(
|
|
|
|
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
|
|
|
|
).cuda()
|
|
|
|
dist.all_reduce(
|
|
|
|
input_embeddings, group=plugin.pp_group
|
|
|
|
) # pp inputs except the first stage doesn't matter, but need to be replicate for torch model check
|
2024-10-16 03:25:04 +00:00
|
|
|
|
2024-10-16 03:58:50 +00:00
|
|
|
dist.all_reduce(input_embeddings, group=plugin.tp_group) # tp group duplicate input
|
|
|
|
dist.all_reduce(input_embeddings, group=plugin.sp_group) # sp group duplicate input
|
2024-10-16 03:25:04 +00:00
|
|
|
|
|
|
|
# run the model with hybrid parallel
|
|
|
|
if booster.plugin.stage_manager is not None:
|
|
|
|
# for test with pp
|
2024-10-16 03:58:50 +00:00
|
|
|
data_iter = iter([{"inputs_embeds": input_embeddings}])
|
2024-10-16 03:25:04 +00:00
|
|
|
sharded_output = booster.execute_pipeline(
|
|
|
|
data_iter,
|
|
|
|
parallel_model,
|
|
|
|
lambda x, y: x.last_hidden_state.mean(),
|
|
|
|
parallel_optimizer,
|
|
|
|
return_loss=True,
|
|
|
|
return_outputs=True,
|
|
|
|
)
|
|
|
|
# stage 0 chunk 0
|
|
|
|
if (
|
|
|
|
booster.plugin.stage_manager.is_first_stage(ignore_chunk=True)
|
|
|
|
and rank == dist.get_process_group_ranks(plugin.pp_group)[0]
|
|
|
|
):
|
|
|
|
parallel_output = sharded_output["loss"]
|
|
|
|
else:
|
|
|
|
parallel_output = torch.tensor(12345.0, device="cuda")
|
|
|
|
# broadcast along pp axis
|
|
|
|
dist.broadcast(parallel_output, src=dist.get_process_group_ranks(plugin.pp_group)[0], group=plugin.pp_group)
|
|
|
|
|
|
|
|
else:
|
|
|
|
# for test without pp
|
2024-10-16 03:58:50 +00:00
|
|
|
parallel_output = parallel_model(inputs_embeds=input_embeddings.to(dtype)).last_hidden_state.mean()
|
2024-10-16 03:25:04 +00:00
|
|
|
parallel_optimizer.backward(parallel_output)
|
|
|
|
parallel_optimizer.step()
|
|
|
|
parallel_optimizer.zero_grad()
|
|
|
|
dist.all_reduce(parallel_output, group=plugin.dp_group)
|
|
|
|
|
|
|
|
# ===================================================================================
|
|
|
|
# run normal model with all dp(different) inputs
|
2024-10-16 03:58:50 +00:00
|
|
|
all_inputs = [input_embeddings.clone() for _ in range(dp_size)]
|
|
|
|
dist.all_gather(all_inputs, input_embeddings, group=plugin.dp_group)
|
2024-10-16 03:25:04 +00:00
|
|
|
torch_output_sum = 0
|
2024-11-12 07:28:49 +00:00
|
|
|
# torch_model.apply(register_hooks) # register hook for base model
|
2024-10-16 03:25:04 +00:00
|
|
|
for input_data_ in all_inputs:
|
2024-10-16 03:58:50 +00:00
|
|
|
torch_output = torch_model(inputs_embeds=input_data_.to(dtype)).last_hidden_state.mean()
|
2024-10-16 03:25:04 +00:00
|
|
|
torch_output.backward()
|
|
|
|
torch_output_sum += torch_output.detach()
|
|
|
|
# avg dp grads follows zero optimizer
|
|
|
|
for p in torch_model.parameters():
|
|
|
|
if p.grad is not None:
|
|
|
|
p.grad /= dp_size
|
|
|
|
torch_optimizer.step()
|
|
|
|
torch_optimizer.zero_grad()
|
|
|
|
|
2024-11-12 07:28:49 +00:00
|
|
|
print(f"parallel_output {parallel_output}, torch_output_sum {torch_output_sum}")
|
2024-10-16 03:58:50 +00:00
|
|
|
assert_loose_close(parallel_output, torch_output_sum, dtype=dtype)
|
|
|
|
print(f"rank {dist.get_rank()} pp_size:{pp_size}, tp_size {tp_size}, sp_size :{sp_size} test passed")
|
2024-10-16 03:25:04 +00:00
|
|
|
clear_layout_converter()
|
|
|
|
Randomizer.reset_index()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
2024-09-02 09:50:47 +00:00
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
disable_existing_loggers()
|
|
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
2024-11-11 08:54:39 +00:00
|
|
|
run_with_booster_moehybridplugin()
|
2024-10-16 03:58:50 +00:00
|
|
|
run_with_booster_hybridplugin()
|
2024-08-30 02:47:52 +00:00
|
|
|
|
|
|
|
|
2024-08-27 07:31:58 +00:00
|
|
|
@pytest.mark.dist
|
2024-08-22 10:25:34 +00:00
|
|
|
@rerun_if_address_is_in_use()
|
2024-09-02 09:50:47 +00:00
|
|
|
def test_pp():
|
2024-08-22 10:25:34 +00:00
|
|
|
spawn(
|
2024-09-02 09:50:47 +00:00
|
|
|
run_dist,
|
2024-08-22 10:25:34 +00:00
|
|
|
nprocs=4,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2024-10-14 07:02:43 +00:00
|
|
|
# python -m pytest -s tests/test_pipeline/test_schedule/test_zerobubble_pp.py
|
2024-08-22 10:25:34 +00:00
|
|
|
if __name__ == "__main__":
|
2024-09-02 09:50:47 +00:00
|
|
|
test_pp()
|