ColossalAI/tests/test_pipeline/test_schedule/test_zerobubble_pp.py

916 lines
40 KiB
Python
Raw Normal View History

from copy import deepcopy
from functools import partial
from typing import Tuple
2024-08-27 07:31:58 +00:00
import pytest
import torch
import torch.distributed as dist
import torch.nn as nn
2024-08-23 06:04:12 +00:00
from torch.testing import assert_close
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
from transformers.models.mixtral.modeling_mixtral import MixtralModel
import colossalai
from colossalai.booster.booster import Booster
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.cluster import ProcessGroupMesh
2024-08-29 03:16:59 +00:00
from colossalai.interface import OptimizerWrapper
2024-09-02 09:50:47 +00:00
from colossalai.logging import disable_existing_loggers
from colossalai.pipeline.schedule.v_schedule import PipelineGraph, ScheduledNode
from colossalai.pipeline.schedule.zero_bubble_pp import ZeroBubbleVPipeScheduler
from colossalai.pipeline.stage_manager import PipelineStageManager
2024-09-02 09:50:47 +00:00
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing.random import seed_all
from tests.test_moe.moe_utils import assert_loose_close
NUM_BATCH = 8
NUM_TOK_PER_BATCH, NUM_EXPERTS = 4, 4
NUM_LAYERS = 8
HIDDEN_SIZE_PER_HEAD = 4
NUM_HEADS = 4
TOP_K = 1
class MlpModel(nn.Module):
def __init__(
self,
in_dim,
out_dim,
num_layers,
stage_index=None,
stage_mgr: PipelineStageManager = None,
):
super().__init__()
self.layers = nn.Sequential(*[nn.Linear(in_dim, out_dim, bias=None) for _ in range(num_layers)])
def forward(
self,
data: torch.Tensor = None,
hidden_states: torch.Tensor = None,
stage_index=None,
stage_mgr: PipelineStageManager = None,
model_chunk_id: int = None,
):
if stage_mgr is None:
hidden_states = data
for layer in self.layers:
hidden_states = layer(hidden_states)
return hidden_states
else:
# Set not used layer to None
held_layers = self.layers[stage_index[0] : stage_index[1]]
# fwd end
if stage_mgr.is_first_stage() and stage_mgr.model_chunk_id == 1:
return held_layers(hidden_states)
# fwd start
elif stage_mgr.is_first_stage() and stage_mgr.model_chunk_id == 0:
return {"hidden_states": held_layers(data)}
# fwd middle
else:
return {"hidden_states": held_layers(hidden_states)}
def assert_optim_param_groups(optim_base_param_groups, optim_pp_param_groups):
for (key_base, val_base), (key_pp, val_pp) in zip(optim_base_param_groups.items(), optim_pp_param_groups.items()):
if key_base == key_pp:
if key_base != "params":
assert val_base == val_pp
def get_model_numel(model: torch.nn.Module) -> Tuple[int, int]:
num_params = 0
num_params_trainable = 0
for p in model.parameters():
num_params += p.numel()
if p.requires_grad:
num_params_trainable += p.numel()
return num_params, num_params_trainable
# 1) Test manual v_schedule with multiple microbatch
2024-09-02 09:50:47 +00:00
@parameterize(
"test_config",
[
{
"batch_size": 8,
2024-09-02 09:50:47 +00:00
"tp_size": 1,
"pp_size": 4,
"num_microbatches": 4,
"zero_stage": 1,
"precision": "bf16",
"num_model_chunk": 2,
2024-09-02 09:50:47 +00:00
},
],
)
def run_fwd_bwd_iter_input(test_config):
# init dist
rank = dist.get_rank()
2024-09-02 09:50:47 +00:00
pp_size = test_config["pp_size"]
pg_mesh = ProcessGroupMesh(pp_size)
2024-09-02 09:50:47 +00:00
num_microbatch = test_config["num_microbatches"]
num_model_chunk = test_config["num_model_chunk"]
# stage_manager
2024-09-02 09:50:47 +00:00
stage_manager = PipelineStageManager(
pg_mesh, pipeline_axis=0, enable_interleave=True, num_model_chunks=num_model_chunk
)
# schedule list
zbv_schedule = [
# stage 0
[
# microbatch 0
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=0),
ScheduledNode(type="F", chunk=0, stage=0, minibatch=0),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=0),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=0),
ScheduledNode(type="F", chunk=1, stage=0, minibatch=0),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=0),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=0),
ScheduledNode(type="B", chunk=1, stage=0, minibatch=0),
ScheduledNode(type="W", chunk=1, stage=0, minibatch=0),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=0),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=0),
ScheduledNode(type="B", chunk=0, stage=0, minibatch=0),
ScheduledNode(type="W", chunk=0, stage=0, minibatch=0),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=0),
# microbatch 1
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=1),
ScheduledNode(type="F", chunk=0, stage=0, minibatch=1),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=1),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=1),
ScheduledNode(type="F", chunk=1, stage=0, minibatch=1),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=1),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=1),
ScheduledNode(type="B", chunk=1, stage=0, minibatch=1),
ScheduledNode(type="W", chunk=1, stage=0, minibatch=1),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=1),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=1),
ScheduledNode(type="B", chunk=0, stage=0, minibatch=1),
ScheduledNode(type="W", chunk=0, stage=0, minibatch=1),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=1),
# microbatch 2
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=2),
ScheduledNode(type="F", chunk=0, stage=0, minibatch=2),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=2),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=2),
ScheduledNode(type="F", chunk=1, stage=0, minibatch=2),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=2),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=2),
ScheduledNode(type="B", chunk=1, stage=0, minibatch=2),
ScheduledNode(type="W", chunk=1, stage=0, minibatch=2),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=2),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=2),
ScheduledNode(type="B", chunk=0, stage=0, minibatch=2),
ScheduledNode(type="W", chunk=0, stage=0, minibatch=2),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=2),
# microbatch 3
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=3),
ScheduledNode(type="F", chunk=0, stage=0, minibatch=3),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=3),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=3),
ScheduledNode(type="F", chunk=1, stage=0, minibatch=3),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=3),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=3),
ScheduledNode(type="B", chunk=1, stage=0, minibatch=3),
ScheduledNode(type="W", chunk=1, stage=0, minibatch=3),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=3),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=3),
ScheduledNode(type="B", chunk=0, stage=0, minibatch=3),
ScheduledNode(type="W", chunk=0, stage=0, minibatch=3),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=3),
],
# stage 1
[
# microbatch 0
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=0),
ScheduledNode(type="F", chunk=0, stage=1, minibatch=0),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=0),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=0),
ScheduledNode(type="F", chunk=1, stage=1, minibatch=0),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=0),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=0),
ScheduledNode(type="B", chunk=1, stage=1, minibatch=0),
ScheduledNode(type="W", chunk=1, stage=1, minibatch=0),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=0),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=0),
ScheduledNode(type="B", chunk=0, stage=1, minibatch=0),
ScheduledNode(type="W", chunk=0, stage=1, minibatch=0),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=0),
# microbatch 1
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=1),
ScheduledNode(type="F", chunk=0, stage=1, minibatch=1),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=1),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=1),
ScheduledNode(type="F", chunk=1, stage=1, minibatch=1),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=1),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=1),
ScheduledNode(type="B", chunk=1, stage=1, minibatch=1),
ScheduledNode(type="W", chunk=1, stage=1, minibatch=1),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=1),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=1),
ScheduledNode(type="B", chunk=0, stage=1, minibatch=1),
ScheduledNode(type="W", chunk=0, stage=1, minibatch=1),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=1),
# microbatch 2
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=2),
ScheduledNode(type="F", chunk=0, stage=1, minibatch=2),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=2),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=2),
ScheduledNode(type="F", chunk=1, stage=1, minibatch=2),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=2),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=2),
ScheduledNode(type="B", chunk=1, stage=1, minibatch=2),
ScheduledNode(type="W", chunk=1, stage=1, minibatch=2),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=2),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=2),
ScheduledNode(type="B", chunk=0, stage=1, minibatch=2),
ScheduledNode(type="W", chunk=0, stage=1, minibatch=2),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=2),
# microbatch 3
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=3),
ScheduledNode(type="F", chunk=0, stage=1, minibatch=3),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=3),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=3),
ScheduledNode(type="F", chunk=1, stage=1, minibatch=3),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=3),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=3),
ScheduledNode(type="B", chunk=1, stage=1, minibatch=3),
ScheduledNode(type="W", chunk=1, stage=1, minibatch=3),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=3),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=3),
ScheduledNode(type="B", chunk=0, stage=1, minibatch=3),
ScheduledNode(type="W", chunk=0, stage=1, minibatch=3),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=3),
],
# stage 2
[
# microbatch 0
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=0),
ScheduledNode(type="F", chunk=0, stage=2, minibatch=0),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=0),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=0),
ScheduledNode(type="F", chunk=1, stage=2, minibatch=0),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=0),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=0),
ScheduledNode(type="B", chunk=1, stage=2, minibatch=0),
ScheduledNode(type="W", chunk=1, stage=2, minibatch=0),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=0),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=0),
ScheduledNode(type="B", chunk=0, stage=2, minibatch=0),
ScheduledNode(type="W", chunk=0, stage=2, minibatch=0),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=0),
# microbatch 1
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=1),
ScheduledNode(type="F", chunk=0, stage=2, minibatch=1),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=1),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=1),
ScheduledNode(type="F", chunk=1, stage=2, minibatch=1),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=1),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=1),
ScheduledNode(type="B", chunk=1, stage=2, minibatch=1),
ScheduledNode(type="W", chunk=1, stage=2, minibatch=1),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=1),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=1),
ScheduledNode(type="B", chunk=0, stage=2, minibatch=1),
ScheduledNode(type="W", chunk=0, stage=2, minibatch=1),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=1),
# microbatch 2
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=2),
ScheduledNode(type="F", chunk=0, stage=2, minibatch=2),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=2),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=2),
ScheduledNode(type="F", chunk=1, stage=2, minibatch=2),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=2),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=2),
ScheduledNode(type="B", chunk=1, stage=2, minibatch=2),
ScheduledNode(type="W", chunk=1, stage=2, minibatch=2),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=2),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=2),
ScheduledNode(type="B", chunk=0, stage=2, minibatch=2),
ScheduledNode(type="W", chunk=0, stage=2, minibatch=2),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=2),
# microbatch 3
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=3),
ScheduledNode(type="F", chunk=0, stage=2, minibatch=3),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=3),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=3),
ScheduledNode(type="F", chunk=1, stage=2, minibatch=3),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=3),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=3),
ScheduledNode(type="B", chunk=1, stage=2, minibatch=3),
ScheduledNode(type="W", chunk=1, stage=2, minibatch=3),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=3),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=3),
ScheduledNode(type="B", chunk=0, stage=2, minibatch=3),
ScheduledNode(type="W", chunk=0, stage=2, minibatch=3),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=3),
],
# stage 3
[
# microbatch 0
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=0),
ScheduledNode(type="F", chunk=0, stage=3, minibatch=0),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=0),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=0),
ScheduledNode(type="F", chunk=1, stage=3, minibatch=0),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=0),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=0),
ScheduledNode(type="B", chunk=1, stage=3, minibatch=0),
ScheduledNode(type="W", chunk=1, stage=3, minibatch=0),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=0),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=0),
ScheduledNode(type="B", chunk=0, stage=3, minibatch=0),
ScheduledNode(type="W", chunk=0, stage=3, minibatch=0),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=0),
# microbatch 1
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=1),
ScheduledNode(type="F", chunk=0, stage=3, minibatch=1),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=1),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=1),
ScheduledNode(type="F", chunk=1, stage=3, minibatch=1),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=1),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=1),
ScheduledNode(type="B", chunk=1, stage=3, minibatch=1),
ScheduledNode(type="W", chunk=1, stage=3, minibatch=1),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=1),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=1),
ScheduledNode(type="B", chunk=0, stage=3, minibatch=1),
ScheduledNode(type="W", chunk=0, stage=3, minibatch=1),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=1),
# microbatch 2
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=2),
ScheduledNode(type="F", chunk=0, stage=3, minibatch=2),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=2),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=2),
ScheduledNode(type="F", chunk=1, stage=3, minibatch=2),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=2),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=2),
ScheduledNode(type="B", chunk=1, stage=3, minibatch=2),
ScheduledNode(type="W", chunk=1, stage=3, minibatch=2),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=2),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=2),
ScheduledNode(type="B", chunk=0, stage=3, minibatch=2),
ScheduledNode(type="W", chunk=0, stage=3, minibatch=2),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=2),
# microbatch 3
# chunk 0 fwd
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=3),
ScheduledNode(type="F", chunk=0, stage=3, minibatch=3),
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=3),
# chunk 1 fwd
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=3),
ScheduledNode(type="F", chunk=1, stage=3, minibatch=3),
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=3),
# chunk 1 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=3),
ScheduledNode(type="B", chunk=1, stage=3, minibatch=3),
ScheduledNode(type="W", chunk=1, stage=3, minibatch=3),
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=3),
# chunk 0 bwd
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=3),
ScheduledNode(type="B", chunk=0, stage=3, minibatch=3),
ScheduledNode(type="W", chunk=0, stage=3, minibatch=3),
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=3),
],
]
scheduler = ZeroBubbleVPipeScheduler(
2024-09-02 09:50:47 +00:00
schedule=zbv_schedule, # hint: send whole schedule or local schedule only ?
stage_manager=stage_manager,
num_model_chunks=pp_size,
num_microbatch=num_microbatch,
overlap_p2p=False,
)
# loss func
def criterion(x, *args, **kwargs):
return (x * x).mean()
# init model and input
batch_size = 4
num_layers = 8
in_dim = out_dim = 8
2024-08-27 06:37:26 +00:00
print(f"Before init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};")
model = MlpModel(in_dim=in_dim, out_dim=out_dim, num_layers=num_layers).to(rank)
data_iter = [torch.rand(batch_size, in_dim, out_dim, requires_grad=True).to(rank)]
input_base = [t.clone() for t in data_iter]
2024-08-27 06:37:26 +00:00
model_base = deepcopy(model)
if rank == 0:
# layer 0 & 7 to chunk 0 on rank0
local_chunk = torch.nn.ModuleList().to(rank)
for idx, sub_model in enumerate(model.layers):
if idx == 0 or idx == 7:
local_chunk.append(sub_model)
elif rank == 1:
# layer 1 & 6 to chunk 1 on rank1
local_chunk = torch.nn.ModuleList().to(rank)
for idx, sub_model in enumerate(model.layers):
if idx == 1 or idx == 6:
local_chunk.append(sub_model)
elif rank == 2:
# layer 2 & 5 to chunk 2 on rank2
local_chunk = torch.nn.ModuleList().to(rank)
for idx, sub_model in enumerate(model.layers):
if idx == 2 or idx == 5:
local_chunk.append(sub_model)
else:
# layer 3 & 4 to chunk 3 on rank3
2024-09-02 11:19:42 +00:00
local_chunk = torch.nn.ModuleList().to(rank)
for idx, sub_model in enumerate(model.layers):
if idx == 3 or idx == 4:
local_chunk.append(sub_model)
2024-09-02 09:50:47 +00:00
# init optimizer
optimizer_base = torch.optim.SGD(model_base.parameters(), lr=1e-5)
optimizer_pp = OptimizerWrapper(torch.optim.SGD(local_chunk.parameters(), lr=1e-5))
print(
f"After init Model & input: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};"
)
torch.cuda.synchronize()
2024-09-02 09:50:47 +00:00
result = scheduler.forward_backward_step(
model_chunk=local_chunk,
data_iter=iter(data_iter),
criterion=criterion,
2024-09-02 09:50:47 +00:00
optimizer=optimizer_pp,
return_loss=True,
return_outputs=True,
)
2024-09-02 09:50:47 +00:00
optimizer_pp.step()
##########################
# Fwd bwd for base
##########################
# fwd & bwd
output_base = model_base(input_base[0])
2024-08-27 06:37:26 +00:00
loss_base = criterion(output_base)
loss_base.backward()
2024-09-02 09:50:47 +00:00
optimizer_base.step()
2024-08-27 06:37:26 +00:00
print(f"After base fwd & bwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
##########################
# assert weight
##########################
if rank == 0:
# layer 0
assert_close(local_chunk[0].weight, model_base.layers[0].weight)
assert_close(local_chunk[0].weight.grad, model_base.layers[0].weight.grad)
# layer 7
assert_close(local_chunk[1].weight, model_base.layers[7].weight)
assert_close(local_chunk[1].weight.grad, model_base.layers[7].weight.grad)
if rank == 1:
# layer 1
assert_close(local_chunk[0].weight, model_base.layers[1].weight)
assert_close(local_chunk[0].weight.grad, model_base.layers[1].weight.grad)
# layer 6
assert_close(local_chunk[1].weight, model_base.layers[6].weight)
assert_close(local_chunk[1].weight.grad, model_base.layers[6].weight.grad)
if rank == 2:
# layer 2
assert_close(local_chunk[0].weight, model_base.layers[2].weight)
assert_close(local_chunk[0].weight.grad, model_base.layers[2].weight.grad)
# layer 5
assert_close(local_chunk[1].weight, model_base.layers[5].weight)
assert_close(local_chunk[1].weight.grad, model_base.layers[5].weight.grad)
if rank == 3:
# layer 3
assert_close(local_chunk[0].weight, model_base.layers[3].weight)
assert_close(local_chunk[0].weight.grad, model_base.layers[3].weight.grad)
# layer 4
assert_close(local_chunk[1].weight, model_base.layers[4].weight)
assert_close(local_chunk[1].weight.grad, model_base.layers[4].weight.grad)
2024-09-02 09:50:47 +00:00
# 2) add optimizer base 1)
@parameterize(
"test_config",
[
{
"batch_size": 8,
2024-09-02 09:50:47 +00:00
"tp_size": 1,
"pp_size": 4,
"num_microbatches": 4,
"zero_stage": 1,
"precision": "bf16",
"num_model_chunk": 2,
2024-09-02 09:50:47 +00:00
},
2024-09-18 07:51:54 +00:00
{
"batch_size": 8,
"tp_size": 1,
"pp_size": 4,
"num_microbatches": 8,
"zero_stage": 1,
"precision": "bf16",
"num_model_chunk": 2,
},
2024-09-02 09:50:47 +00:00
],
)
def run_fwd_bwd_vschedule_with_optim(test_config):
2024-08-29 03:16:59 +00:00
# init dist
rank = dist.get_rank()
2024-09-02 09:50:47 +00:00
pp_size = test_config["pp_size"]
2024-08-29 03:16:59 +00:00
pg_mesh = ProcessGroupMesh(pp_size)
2024-09-02 09:50:47 +00:00
num_microbatch = test_config["num_microbatches"]
num_model_chunk = test_config["num_model_chunk"]
2024-08-29 03:16:59 +00:00
# stage_manager
stage_manager = PipelineStageManager(
pg_mesh, pipeline_axis=0, enable_interleave=True, num_model_chunks=num_model_chunk, use_zbv=True
2024-08-29 03:16:59 +00:00
)
h, a, s = 4096, 32, 1024
mem_f = 34 * h + 5 * a * s
mem_w = -32 * h
mem_b = -mem_w - mem_f
graph = PipelineGraph(
2024-09-02 09:50:47 +00:00
n_stage=pp_size,
2024-08-29 03:16:59 +00:00
n_micro=num_microbatch,
2024-08-30 02:47:52 +00:00
f_cost=1,
b_cost=1,
w_cost=1,
c_cost=1,
2024-08-29 03:16:59 +00:00
f_mem=mem_f,
b_mem=mem_b,
w_mem=mem_w,
# max_mem=mem_f * (p * 2 + m_offset),
)
zbv_schedule = graph.get_v_schedule()
scheduler = ZeroBubbleVPipeScheduler(
2024-09-02 09:50:47 +00:00
schedule=zbv_schedule, # hint: send whole schedule or local schedule only ?
2024-08-29 03:16:59 +00:00
stage_manager=stage_manager,
num_model_chunks=num_model_chunk,
num_microbatch=num_microbatch,
overlap_p2p=False,
)
# init loss func
def criterion(x, *args, **kwargs):
x = x["hidden_states"]
return (x * x).mean()
def criterion_base(x, *args, **kwargs):
2024-08-29 03:16:59 +00:00
return (x * x).mean()
# init model and input
2024-09-02 09:50:47 +00:00
batch_size = test_config["batch_size"]
2024-08-29 03:16:59 +00:00
num_layers = 8
assert num_layers % num_model_chunk == 0, f"Model with {num_layers} layer can not dist on {num_model_chunk} chunk"
in_dim = out_dim = 1024
2024-09-04 06:34:18 +00:00
before_init_memory = torch.cuda.memory_allocated() / 1024**3
print(f"Before init Model: {before_init_memory :.3f} GB on device {stage_manager.get_rank()};")
2024-08-29 03:16:59 +00:00
model = MlpModel(in_dim=in_dim, out_dim=out_dim, num_layers=num_layers).to(rank)
data_iter = {"data": torch.rand(batch_size, in_dim, out_dim, requires_grad=True).to(rank)}
input_base = {k: v.clone() for k, v in data_iter.items()}
2024-08-29 03:16:59 +00:00
model_base = deepcopy(model)
model_pp = deepcopy(model)
2024-09-25 06:15:45 +00:00
layers_per_stage = stage_manager.distribute_layers(len(model.layers))
stage_manager.stage_indices = stage_manager.get_stage_index(layers_per_stage)
2024-08-29 03:16:59 +00:00
model_pp._forward = model_pp.forward
model_pp.forward = partial(model_pp._forward, stage_mgr=stage_manager)
2024-08-29 03:16:59 +00:00
# init optimizer
optimizer_base = torch.optim.SGD(model_base.parameters(), momentum=0.1, lr=1e-5)
optimizer_pp = OptimizerWrapper(torch.optim.SGD(model_pp.parameters(), momentum=0.1, lr=1e-5))
2024-08-29 03:16:59 +00:00
2024-09-04 06:34:18 +00:00
after_init_memory = torch.cuda.memory_allocated() / 1024**3
print(f"After init Model & input: {after_init_memory :.5f} GB on device {stage_manager.get_rank()};")
2024-08-29 03:16:59 +00:00
torch.cuda.synchronize()
2024-08-30 02:47:52 +00:00
result = scheduler.forward_backward_step(
model_chunk=model_pp,
data_iter=iter([data_iter]),
2024-08-29 03:16:59 +00:00
criterion=criterion,
optimizer=optimizer_pp,
return_loss=True,
return_outputs=True,
2024-08-29 03:16:59 +00:00
)
optimizer_pp.step()
2024-09-09 05:41:39 +00:00
after_pp_step_memory = torch.cuda.memory_allocated() / 1024**3
2024-09-04 06:34:18 +00:00
# assert memory
if rank != 0:
2024-09-19 08:27:47 +00:00
# w.grad: hid_dim * hid_dim * microbatch * 4(fp32) * 2 (2 layer in each stage) / 1024**3
# output: hid_dim * hid_dim * microbatch * 4(fp32) / 1024**3
# optim: state hid_dim * hid_dim * 4(fp32) * 2 (2 layer in each stage) / 1024**3
2024-09-19 08:27:47 +00:00
print(
f" num_microbatch {num_microbatch} rank {rank}: {(after_pp_step_memory - after_init_memory)} <= {(in_dim * in_dim * 4 * 5 * batch_size / 1024**3)}"
)
assert (after_pp_step_memory - after_init_memory) <= (in_dim * in_dim * 4 * 5 * batch_size / 1024**3)
2024-09-04 06:34:18 +00:00
else:
2024-09-04 10:57:38 +00:00
# rank0 will also hold output;
2024-09-09 05:41:39 +00:00
print(
2024-09-19 08:27:47 +00:00
f" num_microbatch {num_microbatch} rank {rank}: {round((after_pp_step_memory - after_init_memory), 5)} <= {round((in_dim * in_dim * 4 * 5 * batch_size / 1024**3 + batch_size * in_dim * in_dim * 4 / 1024**3), 5)}"
)
assert round((after_pp_step_memory - after_init_memory), 5) <= round(
(in_dim * in_dim * 4 * 5 * batch_size / 1024**3 + batch_size * in_dim * in_dim * 4 / 1024**3), 5
2024-09-09 05:41:39 +00:00
)
2024-08-29 03:16:59 +00:00
##########################
# Fwd bwd for base
##########################
# fwd & bwd
# output_base = model_base(input_base["data"])
output_base = model_base.forward(data=input_base["data"])
loss_base = criterion_base(output_base)
2024-08-29 03:16:59 +00:00
loss_base.backward()
optimizer_base.step()
##########################
# assert loss & output
##########################
# only chunk 1 stage 0 hold loss and output
if rank == 0:
assert_close(result["loss"], loss_base)
assert_close(result["outputs"]["hidden_states"], output_base)
# ##########################
# # assert weight & optim state
# ##########################
optim_base_state = optimizer_base.state_dict()["state"]
optim_pp_state = optimizer_pp.state_dict()["state"]
optim_base_param_groups = optimizer_base.state_dict()["param_groups"][0]
optim_pp_param_groups = optimizer_pp.state_dict()["param_groups"][0]
2024-08-29 03:16:59 +00:00
if rank == 0:
# layer 0
assert_close(model_pp.layers[0].weight, model_base.layers[0].weight)
assert_close(model_pp.layers[0].weight.grad, model_base.layers[0].weight.grad)
assert_close(optim_pp_state[0]["momentum_buffer"], optim_base_state[0]["momentum_buffer"])
2024-08-29 03:16:59 +00:00
# layer 7
assert_close(model_pp.layers[7].weight, model_base.layers[7].weight)
assert_close(model_pp.layers[7].weight.grad, model_base.layers[7].weight.grad)
assert_close(optim_pp_state[7]["momentum_buffer"], optim_base_state[7]["momentum_buffer"])
2024-08-29 03:16:59 +00:00
if rank == 1:
# layer 1
assert_close(model_pp.layers[1].weight, model_base.layers[1].weight)
assert_close(model_pp.layers[1].weight.grad, model_base.layers[1].weight.grad)
assert_close(optim_pp_state[1]["momentum_buffer"], optim_base_state[1]["momentum_buffer"])
2024-08-29 03:16:59 +00:00
# layer 6
assert_close(model_pp.layers[6].weight, model_base.layers[6].weight)
assert_close(model_pp.layers[6].weight.grad, model_base.layers[6].weight.grad)
assert_close(optim_pp_state[6]["momentum_buffer"], optim_base_state[6]["momentum_buffer"])
2024-08-29 03:16:59 +00:00
if rank == 2:
# layer 2
assert_close(model_pp.layers[2].weight, model_base.layers[2].weight)
assert_close(model_pp.layers[2].weight.grad, model_base.layers[2].weight.grad)
assert_close(optim_pp_state[2]["momentum_buffer"], optim_base_state[2]["momentum_buffer"])
2024-08-29 03:16:59 +00:00
# layer 5
assert_close(model_pp.layers[5].weight, model_base.layers[5].weight)
assert_close(model_pp.layers[5].weight.grad, model_base.layers[5].weight.grad)
assert_close(optim_pp_state[5]["momentum_buffer"], optim_base_state[5]["momentum_buffer"])
2024-08-29 03:16:59 +00:00
if rank == 3:
# layer 3
assert_close(model_pp.layers[3].weight, model_base.layers[3].weight)
assert_close(model_pp.layers[3].weight.grad, model_base.layers[3].weight.grad)
assert_close(optim_pp_state[3]["momentum_buffer"], optim_base_state[3]["momentum_buffer"])
2024-08-29 03:16:59 +00:00
# layer 4
assert_close(model_pp.layers[4].weight, model_base.layers[4].weight)
assert_close(model_pp.layers[4].weight.grad, model_base.layers[4].weight.grad)
assert_close(optim_pp_state[4]["momentum_buffer"], optim_base_state[4]["momentum_buffer"])
2024-08-29 03:16:59 +00:00
# assert optim param_groups
assert_optim_param_groups(optim_base_param_groups, optim_pp_param_groups)
# TODO:3) support booster & Hybrid base 2)
2024-09-02 10:00:43 +00:00
def run_with_hybridplugin(test_config):
pass
# TODO:4) support booster & MoEHybrid base 2)
@parameterize(
"config",
[
(0, 1, 4, 1, 1),
# (0, 2, 2, 1, 1),
# (0, 2, 1, 2, 1),
# (0, 2, 1, 1, 2),
],
)
def run_with_booster_moehybridplugin(config: Tuple[int, ...]):
stage, ep_size, pp_size, tp_size, sp_size = config
num_microbatches = pp_size
dist.get_world_size()
rank = dist.get_rank()
dtype, precision = torch.float16, "fp16"
torch.cuda.set_device(dist.get_rank())
########
# init base model
########
assert pp_size <= NUM_LAYERS, "pp_size should be less than or equal to NUM_LAYERS"
config = MixtralConfig(
hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
num_hidden_layers=NUM_LAYERS,
num_attention_heads=NUM_HEADS,
num_key_value_heads=NUM_HEADS,
num_local_experts=NUM_EXPERTS,
num_experts_per_tok=TOP_K,
attn_implementation="flash_attention_2",
)
# init model with the same seed
seed_all(10086)
torch_model = MixtralModel(config).to(dtype).cuda()
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
# init schedule
h, a, s = config.hidden_size, config.num_attention_heads, 1024
mem_f = 34 * h + 5 * a * s
mem_w = -32 * h
mem_b = -mem_w - mem_f
graph = PipelineGraph(
n_stage=pp_size,
n_micro=num_microbatches,
f_cost=1,
b_cost=1,
w_cost=1,
c_cost=1,
f_mem=mem_f,
b_mem=mem_b,
w_mem=mem_w,
# max_mem=mem_f * (p * 2 + m_offset),
)
zbv_schedule = graph.get_v_schedule()
# init MoeHybridPlugin
plugin = MoeHybridParallelPlugin(
pp_size=pp_size,
num_microbatches=pp_size,
tp_size=tp_size,
sp_size=sp_size,
ep_size=ep_size,
zero_stage=stage,
enable_sequence_parallelism=sp_size > 1,
sequence_parallelism_mode="all_to_all" if sp_size > 1 else None,
overlap_communication=False,
initial_scale=1,
precision=precision,
find_unused_parameters=True,
pp_style="zbv",
scheduler_nodes=zbv_schedule,
num_model_chunks=2,
)
dp_size = plugin.dp_size
booster = Booster(plugin=plugin)
########
# init pp model
########
parallel_model = deepcopy(torch_model)
parallel_optimizer = torch.optim.SGD(parallel_model.parameters(), lr=1)
parallel_model, parallel_optimizer, _, _, _ = booster.boost(parallel_model, parallel_optimizer)
# create different input along dp axis
seed_all(1453 + rank)
torch_model.train()
parallel_model.train()
for _ in range(2):
# gen random input
input_embeddings = torch.rand(
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
).cuda()
dist.all_reduce(
input_embeddings, group=plugin.pp_group
) # pp inputs except the first stage doesn't matter, but need to be replicate for torch model check
dist.all_reduce(input_embeddings, group=plugin.tp_group) # tp group duplicate input
dist.all_reduce(input_embeddings, group=plugin.sp_group) # sp group duplicate input
# run the model with hybrid parallel
if booster.plugin.stage_manager is not None:
# for test with pp
data_iter = iter([{"inputs_embeds": input_embeddings}])
sharded_output = booster.execute_pipeline(
data_iter,
parallel_model,
lambda x, y: x.last_hidden_state.mean(),
parallel_optimizer,
return_loss=True,
return_outputs=True,
)
# stage 0 chunk 0
parallel_output = None
if rank == dist.get_process_group_ranks(plugin.pp_group)[0]:
parallel_output = sharded_output["loss"]
else:
# for test without pp
parallel_output = parallel_model(inputs_embeds=input_embeddings.to(dtype)).last_hidden_state.mean()
parallel_optimizer.backward(parallel_output)
parallel_optimizer.step()
parallel_optimizer.zero_grad()
# dist.all_reduce(parallel_output, group=plugin.dp_group)
# ===================================================================================
# run normal model with all dp(different) inputs
all_inputs = [torch.empty_like(input_embeddings) for _ in range(dp_size)]
dist.all_gather(all_inputs, input_embeddings, group=plugin.dp_group)
torch_output_sum = 0
for input_data_ in all_inputs:
torch_output = torch_model(inputs_embeds=input_data_.to(dtype)).last_hidden_state.mean()
torch_output.backward()
torch_output_sum += torch_output.detach()
# avg dp grads follows zero optimizer
for p in torch_model.parameters():
if p.grad is not None:
p.grad /= dp_size
torch_optimizer.step()
torch_optimizer.zero_grad()
if rank == dist.get_process_group_ranks(plugin.pp_group)[0]:
assert_loose_close(parallel_output, torch_output_sum, dtype=dtype)
2024-08-30 02:47:52 +00:00
2024-09-02 09:50:47 +00:00
def run_dist(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
# run_fwd_bwd_vschedule_with_optim()
run_with_booster_moehybridplugin()
2024-08-30 02:47:52 +00:00
2024-08-27 07:31:58 +00:00
@pytest.mark.dist
@rerun_if_address_is_in_use()
2024-09-02 09:50:47 +00:00
def test_pp():
spawn(
2024-09-02 09:50:47 +00:00
run_dist,
nprocs=4,
)
if __name__ == "__main__":
2024-09-02 09:50:47 +00:00
test_pp()