[feat] add optim backward_b_by_grad

pull/6034/head
duanjunwen 2024-08-29 03:16:59 +00:00
parent b1419ef76a
commit 4c4b01b859
3 changed files with 178 additions and 6 deletions

View File

@ -58,6 +58,28 @@ class OptimizerWrapper:
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
torch.autograd.backward(tensor, grad)
def backward_b_by_grad(self, tensor: Tensor, grad_tensors: Tensor, inputs: Tensor, retain_graph: bool = True):
"""
Performs a backward pass for dx, we only calculate dx = w*dy here
Args:
tensor (Tensor): y or loss of current chunk;
grad_tensors (Tensor): dy of current chunk;
input_obj (Tensor): x of current chunk;
retain_graph (bool): default to be True, we retain graph in backward_b
"""
torch.autograd.backward(
tensors=tensor,
grad_tensors=grad_tensors,
inputs=inputs,
retain_graph=retain_graph,
)
def backward_w_by_grad():
"""
Performs a backward pass for dw, we only calculate dw = x*dy here
"""
def state_dict(self):
"""
Returns the optimizer state.

View File

@ -413,7 +413,7 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
self,
model_chunk: Union[ModuleList, Module],
model_chunk_id: int,
# optimizer: OptimizerWrapper,
optimizer: OptimizerWrapper,
input_obj: Optional[dict],
output_obj: Union[dict, torch.Tensor],
output_obj_grad: Optional[dict],
@ -447,7 +447,6 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
torch.autograd.backward(output_obj, inputs=input_obj, retain_graph=True)
else:
# commom bwd step
# BUG:output_obj_grad is None
torch.autograd.backward(
tensors=output_obj, grad_tensors=output_obj_grad, inputs=input_obj, retain_graph=True
)
@ -564,7 +563,7 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
scheduled_node,
model_chunk: Union[ModuleList, Module],
model_chunk_id: int,
# optimizer: OptimizerWrapper,
optimizer: OptimizerWrapper,
# input_obj: Optional[dict],
# output_obj: Union[dict, torch.Tensor],
# output_obj_grad: Optional[dict],
@ -614,7 +613,7 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
input_object_grad = self.backward_b_step(
model_chunk=model_chunk,
model_chunk_id=model_chunk_id,
# optimizer: OptimizerWrapper,
optimizer=optimizer,
input_obj=input_obj,
output_obj=output_obj,
output_obj_grad=output_tensor_grad,
@ -715,6 +714,7 @@ class ZeroBubbleVPipeScheduler(PipelineSchedule):
scheduled_node=scheduled_node,
model_chunk=model_chunk,
model_chunk_id=scheduled_node.chunk,
optimizer=optimizer,
)
elif scheduled_node.type == "W":
self.schedule_w(

View File

@ -9,6 +9,7 @@ from torch.testing import assert_close
import colossalai
from colossalai.cluster import ProcessGroupMesh
from colossalai.interface import OptimizerWrapper
from colossalai.pipeline.schedule.v_schedule import PipelineGraph, ScheduledNode
from colossalai.pipeline.schedule.zero_bubble_pp import ZeroBubbleVPipeScheduler
from colossalai.pipeline.stage_manager import PipelineStageManager
@ -625,7 +626,148 @@ def run_fwd_bwd_vschedule_with_optim(
batch_size: int,
num_model_chunk: int,
):
pass
# init dist
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost")
rank = dist.get_rank()
pp_size = world_size
pg_mesh = ProcessGroupMesh(pp_size)
num_microbatch = num_microbatch
# stage_manager
stage_manager = PipelineStageManager(
pg_mesh, pipeline_axis=0, enable_interleave=True, num_model_chunks=num_model_chunk
)
h, a, s = 4096, 32, 1024
mem_f = 34 * h + 5 * a * s
mem_w = -32 * h
mem_b = -mem_w - mem_f
graph = PipelineGraph(
n_stage=world_size,
n_micro=num_microbatch,
f_cost=6,
b_cost=6,
w_cost=6,
c_cost=6,
f_mem=mem_f,
b_mem=mem_b,
w_mem=mem_w,
# max_mem=mem_f * (p * 2 + m_offset),
)
zbv_schedule = graph.get_v_schedule()
scheduler = ZeroBubbleVPipeScheduler(
schedule=zbv_schedule[rank], # hint: send whole schedule or local schedule only ?
stage_manager=stage_manager,
num_model_chunks=num_model_chunk,
num_microbatch=num_microbatch,
overlap_p2p=False,
)
# init loss func
def criterion(x, *args, **kwargs):
return (x * x).mean()
# init model and input
batch_size = batch_size
num_layers = 8
assert num_layers % num_model_chunk == 0, f"Model with {num_layers} layer can not dist on {num_model_chunk} chunk"
in_dim = out_dim = 8
print(f"Before init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};")
model = MlpModel(in_dim=in_dim, out_dim=out_dim, num_layers=num_layers).to(rank)
data_iter = [torch.rand(batch_size, in_dim, out_dim, requires_grad=True).to(rank)]
input_base = [t.clone() for t in data_iter]
model_base = deepcopy(model)
if rank == 0:
# layer 0 & 7 to chunk 0 on rank0
local_chunk = torch.nn.ModuleList().to(rank)
for idx, sub_model in enumerate(model.layers):
if idx == 0 or idx == 7:
local_chunk.append(sub_model)
elif rank == 1:
# layer 1 & 6 to chunk 1 on rank1
local_chunk = torch.nn.ModuleList().to(rank)
for idx, sub_model in enumerate(model.layers):
if idx == 1 or idx == 6:
local_chunk.append(sub_model)
elif rank == 2:
# layer 2 & 5 to chunk 2 on rank2
local_chunk = torch.nn.ModuleList().to(rank)
for idx, sub_model in enumerate(model.layers):
if idx == 2 or idx == 5:
local_chunk.append(sub_model)
else:
# layer 3 & 4 to chunk 3 on rank3
local_chunk = torch.nn.Sequential().to(rank)
for idx, sub_model in enumerate(model.layers):
if idx == 3 or idx == 4:
local_chunk.append(sub_model)
# init optimizer
optimizer_base = torch.optim.SGD(model_base.parameters(), lr=1e-5)
optimizer_pp = OptimizerWrapper(torch.optim.SGD(local_chunk.parameters(), lr=1e-5))
print(
f"After init Model & input: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};"
)
torch.cuda.synchronize()
scheduler.run_forward_backward(
model_chunk=local_chunk,
data_iter=iter(data_iter),
criterion=criterion,
optimizer=optimizer_pp,
return_loss=None,
return_outputs=None,
)
##########################
# Fwd bwd for base
##########################
# fwd & bwd
output_base = model_base(input_base[0])
loss_base = criterion(output_base)
loss_base.backward()
optimizer_base.step()
print(f"After base fwd & bwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
##########################
# assert weight
##########################
if rank == 0:
# layer 0
assert_close(local_chunk[0].weight, model_base.layers[0].weight)
assert_close(local_chunk[0].weight.grad, model_base.layers[0].weight.grad)
# layer 7
assert_close(local_chunk[1].weight, model_base.layers[7].weight)
assert_close(local_chunk[1].weight.grad, model_base.layers[7].weight.grad)
if rank == 1:
# layer 1
assert_close(local_chunk[0].weight, model_base.layers[1].weight)
assert_close(local_chunk[0].weight.grad, model_base.layers[1].weight.grad)
# layer 6
assert_close(local_chunk[1].weight, model_base.layers[6].weight)
assert_close(local_chunk[1].weight.grad, model_base.layers[6].weight.grad)
if rank == 2:
# layer 2
assert_close(local_chunk[0].weight, model_base.layers[2].weight)
assert_close(local_chunk[0].weight.grad, model_base.layers[2].weight.grad)
# layer 5
assert_close(local_chunk[1].weight, model_base.layers[5].weight)
assert_close(local_chunk[1].weight.grad, model_base.layers[5].weight.grad)
if rank == 3:
# layer 3
assert_close(local_chunk[0].weight, model_base.layers[3].weight)
assert_close(local_chunk[0].weight.grad, model_base.layers[3].weight.grad)
# layer 4
assert_close(local_chunk[1].weight, model_base.layers[4].weight)
assert_close(local_chunk[1].weight.grad, model_base.layers[4].weight.grad)
##########################
# assert optim state
##########################
@pytest.mark.dist
@ -634,8 +776,16 @@ def run_fwd_bwd_vschedule_with_optim(
@pytest.mark.parametrize("num_model_chunk", [4])
@rerun_if_address_is_in_use()
def test_pp(num_microbatch: int, batch_size: int, num_model_chunk: int):
# spawn(
# run_fwd_bwd_with_vschedule,
# nprocs=4,
# num_microbatch=num_microbatch,
# batch_size=batch_size,
# num_model_chunk=num_model_chunk,
# )
spawn(
run_fwd_bwd_with_vschedule,
run_fwd_bwd_vschedule_with_optim,
nprocs=4,
num_microbatch=num_microbatch,
batch_size=batch_size,