mirror of https://github.com/hpcaitech/ColossalAI
1113 lines
47 KiB
Python
1113 lines
47 KiB
Python
from contextlib import nullcontext
|
|
from copy import deepcopy
|
|
from functools import partial
|
|
from typing import Tuple
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
from torch.testing import assert_close
|
|
from transformers.models.llama.configuration_llama import LlamaConfig
|
|
from transformers.models.llama.modeling_llama import LlamaModel
|
|
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
|
|
from transformers.models.mixtral.modeling_mixtral import MixtralModel
|
|
|
|
import colossalai
|
|
from colossalai.booster.booster import Booster
|
|
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import HybridParallelPlugin, MoeHybridParallelPlugin
|
|
from colossalai.cluster import ProcessGroupMesh
|
|
from colossalai.interface import OptimizerWrapper
|
|
from colossalai.logging import disable_existing_loggers
|
|
from colossalai.pipeline.schedule.v_schedule import PipelineGraph, ScheduledNode
|
|
from colossalai.pipeline.schedule.zero_bubble_pp import ZeroBubbleVPipeScheduler
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
|
from colossalai.shardformer.layer.utils import Randomizer
|
|
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
|
from colossalai.testing.random import seed_all
|
|
from tests.test_moe.moe_utils import assert_loose_close
|
|
|
|
NUM_BATCH = 8
|
|
NUM_TOK_PER_BATCH, NUM_EXPERTS = 4, 4
|
|
NUM_LAYERS = 8
|
|
HIDDEN_SIZE_PER_HEAD = 4
|
|
NUM_HEADS = 4
|
|
TOP_K = 1
|
|
|
|
|
|
def register_hooks(module: torch.nn.Module):
|
|
|
|
def fwd_hook(module, input, output):
|
|
torch.cuda.synchronize()
|
|
name = module._name if hasattr(module, "_name") else module
|
|
print(f"Fwd hook {name} \n output {output}")
|
|
|
|
def bwd_hook(module, grad_input, grad_output):
|
|
torch.cuda.synchronize()
|
|
|
|
def bwd_pre_hook(module, grad_output):
|
|
torch.cuda.synchronize()
|
|
|
|
module.register_forward_hook(fwd_hook)
|
|
# module.register_backward_hook(bwd_hook)
|
|
# module.register_full_backward_pre_hook(bwd_pre_hook)
|
|
|
|
|
|
class MlpModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_dim,
|
|
out_dim,
|
|
num_layers,
|
|
stage_index=None,
|
|
stage_mgr: PipelineStageManager = None,
|
|
):
|
|
super().__init__()
|
|
self.layers = nn.Sequential(*[nn.Linear(in_dim, out_dim, bias=None) for _ in range(num_layers)])
|
|
|
|
def forward(
|
|
self,
|
|
data: torch.Tensor = None,
|
|
hidden_states: torch.Tensor = None,
|
|
stage_index=None,
|
|
stage_mgr: PipelineStageManager = None,
|
|
model_chunk_id: int = None,
|
|
):
|
|
if stage_mgr is None:
|
|
hidden_states = data
|
|
for layer in self.layers:
|
|
hidden_states = layer(hidden_states)
|
|
return hidden_states
|
|
else:
|
|
# Set not used layer to None
|
|
held_layers = self.layers[stage_index[0] : stage_index[1]]
|
|
|
|
# fwd end
|
|
if stage_mgr.is_first_stage() and stage_mgr.model_chunk_id == 1:
|
|
return held_layers(hidden_states)
|
|
# fwd start
|
|
elif stage_mgr.is_first_stage() and stage_mgr.model_chunk_id == 0:
|
|
return {"hidden_states": held_layers(data)}
|
|
# fwd middle
|
|
else:
|
|
return {"hidden_states": held_layers(hidden_states)}
|
|
|
|
def no_sync(self):
|
|
return nullcontext()
|
|
|
|
|
|
def assert_optim_param_groups(optim_base_param_groups, optim_pp_param_groups):
|
|
for (key_base, val_base), (key_pp, val_pp) in zip(optim_base_param_groups.items(), optim_pp_param_groups.items()):
|
|
if key_base == key_pp:
|
|
if key_base != "params":
|
|
assert val_base == val_pp
|
|
|
|
|
|
def get_model_numel(model: torch.nn.Module) -> Tuple[int, int]:
|
|
num_params = 0
|
|
num_params_trainable = 0
|
|
for p in model.parameters():
|
|
num_params += p.numel()
|
|
if p.requires_grad:
|
|
num_params_trainable += p.numel()
|
|
return num_params, num_params_trainable
|
|
|
|
|
|
# 1) Test manual v_schedule with multiple microbatch
|
|
@parameterize(
|
|
"test_config",
|
|
[
|
|
{
|
|
"batch_size": 8,
|
|
"tp_size": 1,
|
|
"pp_size": 4,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 1,
|
|
"precision": "bf16",
|
|
"num_model_chunk": 2,
|
|
},
|
|
],
|
|
)
|
|
def run_fwd_bwd_iter_input(test_config):
|
|
# init dist
|
|
rank = dist.get_rank()
|
|
pp_size = test_config["pp_size"]
|
|
pg_mesh = ProcessGroupMesh(pp_size)
|
|
num_microbatch = test_config["num_microbatches"]
|
|
num_model_chunk = test_config["num_model_chunk"]
|
|
# stage_manager
|
|
stage_manager = PipelineStageManager(
|
|
pg_mesh, pipeline_axis=0, enable_interleave=True, num_model_chunks=num_model_chunk
|
|
)
|
|
|
|
# schedule list
|
|
zbv_schedule = [
|
|
# stage 0
|
|
[
|
|
# microbatch 0
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=0),
|
|
ScheduledNode(type="F", chunk=0, stage=0, minibatch=0),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=0),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=0),
|
|
ScheduledNode(type="F", chunk=1, stage=0, minibatch=0),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=0),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=0),
|
|
ScheduledNode(type="B", chunk=1, stage=0, minibatch=0),
|
|
ScheduledNode(type="W", chunk=1, stage=0, minibatch=0),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=0),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=0),
|
|
ScheduledNode(type="B", chunk=0, stage=0, minibatch=0),
|
|
ScheduledNode(type="W", chunk=0, stage=0, minibatch=0),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=0),
|
|
# microbatch 1
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=1),
|
|
ScheduledNode(type="F", chunk=0, stage=0, minibatch=1),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=1),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=1),
|
|
ScheduledNode(type="F", chunk=1, stage=0, minibatch=1),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=1),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=1),
|
|
ScheduledNode(type="B", chunk=1, stage=0, minibatch=1),
|
|
ScheduledNode(type="W", chunk=1, stage=0, minibatch=1),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=1),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=1),
|
|
ScheduledNode(type="B", chunk=0, stage=0, minibatch=1),
|
|
ScheduledNode(type="W", chunk=0, stage=0, minibatch=1),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=1),
|
|
# microbatch 2
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=2),
|
|
ScheduledNode(type="F", chunk=0, stage=0, minibatch=2),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=2),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=2),
|
|
ScheduledNode(type="F", chunk=1, stage=0, minibatch=2),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=2),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=2),
|
|
ScheduledNode(type="B", chunk=1, stage=0, minibatch=2),
|
|
ScheduledNode(type="W", chunk=1, stage=0, minibatch=2),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=2),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=2),
|
|
ScheduledNode(type="B", chunk=0, stage=0, minibatch=2),
|
|
ScheduledNode(type="W", chunk=0, stage=0, minibatch=2),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=2),
|
|
# microbatch 3
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=0, minibatch=3),
|
|
ScheduledNode(type="F", chunk=0, stage=0, minibatch=3),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=0, minibatch=3),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=0, minibatch=3),
|
|
ScheduledNode(type="F", chunk=1, stage=0, minibatch=3),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=0, minibatch=3),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=0, minibatch=3),
|
|
ScheduledNode(type="B", chunk=1, stage=0, minibatch=3),
|
|
ScheduledNode(type="W", chunk=1, stage=0, minibatch=3),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=0, minibatch=3),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=0, minibatch=3),
|
|
ScheduledNode(type="B", chunk=0, stage=0, minibatch=3),
|
|
ScheduledNode(type="W", chunk=0, stage=0, minibatch=3),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=3),
|
|
],
|
|
# stage 1
|
|
[
|
|
# microbatch 0
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=0),
|
|
ScheduledNode(type="F", chunk=0, stage=1, minibatch=0),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=0),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=0),
|
|
ScheduledNode(type="F", chunk=1, stage=1, minibatch=0),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=0),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=0),
|
|
ScheduledNode(type="B", chunk=1, stage=1, minibatch=0),
|
|
ScheduledNode(type="W", chunk=1, stage=1, minibatch=0),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=0),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=0),
|
|
ScheduledNode(type="B", chunk=0, stage=1, minibatch=0),
|
|
ScheduledNode(type="W", chunk=0, stage=1, minibatch=0),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=0),
|
|
# microbatch 1
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=1),
|
|
ScheduledNode(type="F", chunk=0, stage=1, minibatch=1),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=1),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=1),
|
|
ScheduledNode(type="F", chunk=1, stage=1, minibatch=1),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=1),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=1),
|
|
ScheduledNode(type="B", chunk=1, stage=1, minibatch=1),
|
|
ScheduledNode(type="W", chunk=1, stage=1, minibatch=1),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=1),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=1),
|
|
ScheduledNode(type="B", chunk=0, stage=1, minibatch=1),
|
|
ScheduledNode(type="W", chunk=0, stage=1, minibatch=1),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=1),
|
|
# microbatch 2
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=2),
|
|
ScheduledNode(type="F", chunk=0, stage=1, minibatch=2),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=2),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=2),
|
|
ScheduledNode(type="F", chunk=1, stage=1, minibatch=2),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=2),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=2),
|
|
ScheduledNode(type="B", chunk=1, stage=1, minibatch=2),
|
|
ScheduledNode(type="W", chunk=1, stage=1, minibatch=2),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=2),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=2),
|
|
ScheduledNode(type="B", chunk=0, stage=1, minibatch=2),
|
|
ScheduledNode(type="W", chunk=0, stage=1, minibatch=2),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=2),
|
|
# microbatch 3
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=1, minibatch=3),
|
|
ScheduledNode(type="F", chunk=0, stage=1, minibatch=3),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=1, minibatch=3),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=1, minibatch=3),
|
|
ScheduledNode(type="F", chunk=1, stage=1, minibatch=3),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=1, minibatch=3),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=1, minibatch=3),
|
|
ScheduledNode(type="B", chunk=1, stage=1, minibatch=3),
|
|
ScheduledNode(type="W", chunk=1, stage=1, minibatch=3),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=1, minibatch=3),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=1, minibatch=3),
|
|
ScheduledNode(type="B", chunk=0, stage=1, minibatch=3),
|
|
ScheduledNode(type="W", chunk=0, stage=1, minibatch=3),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=0, minibatch=3),
|
|
],
|
|
# stage 2
|
|
[
|
|
# microbatch 0
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=0),
|
|
ScheduledNode(type="F", chunk=0, stage=2, minibatch=0),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=0),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=0),
|
|
ScheduledNode(type="F", chunk=1, stage=2, minibatch=0),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=0),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=0),
|
|
ScheduledNode(type="B", chunk=1, stage=2, minibatch=0),
|
|
ScheduledNode(type="W", chunk=1, stage=2, minibatch=0),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=0),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=0),
|
|
ScheduledNode(type="B", chunk=0, stage=2, minibatch=0),
|
|
ScheduledNode(type="W", chunk=0, stage=2, minibatch=0),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=0),
|
|
# microbatch 1
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=1),
|
|
ScheduledNode(type="F", chunk=0, stage=2, minibatch=1),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=1),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=1),
|
|
ScheduledNode(type="F", chunk=1, stage=2, minibatch=1),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=1),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=1),
|
|
ScheduledNode(type="B", chunk=1, stage=2, minibatch=1),
|
|
ScheduledNode(type="W", chunk=1, stage=2, minibatch=1),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=1),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=1),
|
|
ScheduledNode(type="B", chunk=0, stage=2, minibatch=1),
|
|
ScheduledNode(type="W", chunk=0, stage=2, minibatch=1),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=1),
|
|
# microbatch 2
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=2),
|
|
ScheduledNode(type="F", chunk=0, stage=2, minibatch=2),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=2),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=2),
|
|
ScheduledNode(type="F", chunk=1, stage=2, minibatch=2),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=2),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=2),
|
|
ScheduledNode(type="B", chunk=1, stage=2, minibatch=2),
|
|
ScheduledNode(type="W", chunk=1, stage=2, minibatch=2),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=2),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=2),
|
|
ScheduledNode(type="B", chunk=0, stage=2, minibatch=2),
|
|
ScheduledNode(type="W", chunk=0, stage=2, minibatch=2),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=2),
|
|
# microbatch 3
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=2, minibatch=3),
|
|
ScheduledNode(type="F", chunk=0, stage=2, minibatch=3),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=2, minibatch=3),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=2, minibatch=3),
|
|
ScheduledNode(type="F", chunk=1, stage=2, minibatch=3),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=2, minibatch=3),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=2, minibatch=3),
|
|
ScheduledNode(type="B", chunk=1, stage=2, minibatch=3),
|
|
ScheduledNode(type="W", chunk=1, stage=2, minibatch=3),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=2, minibatch=3),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=2, minibatch=3),
|
|
ScheduledNode(type="B", chunk=0, stage=2, minibatch=3),
|
|
ScheduledNode(type="W", chunk=0, stage=2, minibatch=3),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=2, minibatch=3),
|
|
],
|
|
# stage 3
|
|
[
|
|
# microbatch 0
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=0),
|
|
ScheduledNode(type="F", chunk=0, stage=3, minibatch=0),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=0),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=0),
|
|
ScheduledNode(type="F", chunk=1, stage=3, minibatch=0),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=0),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=0),
|
|
ScheduledNode(type="B", chunk=1, stage=3, minibatch=0),
|
|
ScheduledNode(type="W", chunk=1, stage=3, minibatch=0),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=0),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=0),
|
|
ScheduledNode(type="B", chunk=0, stage=3, minibatch=0),
|
|
ScheduledNode(type="W", chunk=0, stage=3, minibatch=0),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=0),
|
|
# microbatch 1
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=1),
|
|
ScheduledNode(type="F", chunk=0, stage=3, minibatch=1),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=1),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=1),
|
|
ScheduledNode(type="F", chunk=1, stage=3, minibatch=1),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=1),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=1),
|
|
ScheduledNode(type="B", chunk=1, stage=3, minibatch=1),
|
|
ScheduledNode(type="W", chunk=1, stage=3, minibatch=1),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=1),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=1),
|
|
ScheduledNode(type="B", chunk=0, stage=3, minibatch=1),
|
|
ScheduledNode(type="W", chunk=0, stage=3, minibatch=1),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=1),
|
|
# microbatch 2
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=2),
|
|
ScheduledNode(type="F", chunk=0, stage=3, minibatch=2),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=2),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=2),
|
|
ScheduledNode(type="F", chunk=1, stage=3, minibatch=2),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=2),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=2),
|
|
ScheduledNode(type="B", chunk=1, stage=3, minibatch=2),
|
|
ScheduledNode(type="W", chunk=1, stage=3, minibatch=2),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=2),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=2),
|
|
ScheduledNode(type="B", chunk=0, stage=3, minibatch=2),
|
|
ScheduledNode(type="W", chunk=0, stage=3, minibatch=2),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=2),
|
|
# microbatch 3
|
|
# chunk 0 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=0, stage=3, minibatch=3),
|
|
ScheduledNode(type="F", chunk=0, stage=3, minibatch=3),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=0, stage=3, minibatch=3),
|
|
# chunk 1 fwd
|
|
ScheduledNode(type="RECV_FORWARD", chunk=1, stage=3, minibatch=3),
|
|
ScheduledNode(type="F", chunk=1, stage=3, minibatch=3),
|
|
ScheduledNode(type="SEND_FORWARD", chunk=1, stage=3, minibatch=3),
|
|
# chunk 1 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=1, stage=3, minibatch=3),
|
|
ScheduledNode(type="B", chunk=1, stage=3, minibatch=3),
|
|
ScheduledNode(type="W", chunk=1, stage=3, minibatch=3),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=1, stage=3, minibatch=3),
|
|
# chunk 0 bwd
|
|
ScheduledNode(type="RECV_BACKWARD", chunk=0, stage=3, minibatch=3),
|
|
ScheduledNode(type="B", chunk=0, stage=3, minibatch=3),
|
|
ScheduledNode(type="W", chunk=0, stage=3, minibatch=3),
|
|
ScheduledNode(type="SEND_BACKWARD", chunk=0, stage=3, minibatch=3),
|
|
],
|
|
]
|
|
|
|
scheduler = ZeroBubbleVPipeScheduler(
|
|
schedule=zbv_schedule, # hint: send whole schedule or local schedule only ?
|
|
stage_manager=stage_manager,
|
|
num_model_chunks=pp_size,
|
|
num_microbatch=num_microbatch,
|
|
overlap_p2p=False,
|
|
)
|
|
|
|
# loss func
|
|
def criterion(x, *args, **kwargs):
|
|
return (x * x).mean()
|
|
|
|
# init model and input
|
|
batch_size = 4
|
|
num_layers = 8
|
|
in_dim = out_dim = 8
|
|
print(f"Before init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};")
|
|
model = MlpModel(in_dim=in_dim, out_dim=out_dim, num_layers=num_layers).to(rank)
|
|
data_iter = [torch.rand(batch_size, in_dim, out_dim, requires_grad=True).to(rank)]
|
|
|
|
input_base = [t.clone() for t in data_iter]
|
|
model_base = deepcopy(model)
|
|
|
|
if rank == 0:
|
|
# layer 0 & 7 to chunk 0 on rank0
|
|
local_chunk = torch.nn.ModuleList().to(rank)
|
|
for idx, sub_model in enumerate(model.layers):
|
|
if idx == 0 or idx == 7:
|
|
local_chunk.append(sub_model)
|
|
elif rank == 1:
|
|
# layer 1 & 6 to chunk 1 on rank1
|
|
local_chunk = torch.nn.ModuleList().to(rank)
|
|
for idx, sub_model in enumerate(model.layers):
|
|
if idx == 1 or idx == 6:
|
|
local_chunk.append(sub_model)
|
|
elif rank == 2:
|
|
# layer 2 & 5 to chunk 2 on rank2
|
|
local_chunk = torch.nn.ModuleList().to(rank)
|
|
for idx, sub_model in enumerate(model.layers):
|
|
if idx == 2 or idx == 5:
|
|
local_chunk.append(sub_model)
|
|
else:
|
|
# layer 3 & 4 to chunk 3 on rank3
|
|
local_chunk = torch.nn.ModuleList().to(rank)
|
|
for idx, sub_model in enumerate(model.layers):
|
|
if idx == 3 or idx == 4:
|
|
local_chunk.append(sub_model)
|
|
# init optimizer
|
|
optimizer_base = torch.optim.SGD(model_base.parameters(), lr=1e-5)
|
|
optimizer_pp = OptimizerWrapper(torch.optim.SGD(local_chunk.parameters(), lr=1e-5))
|
|
|
|
print(
|
|
f"After init Model & input: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};"
|
|
)
|
|
|
|
torch.cuda.synchronize()
|
|
result = scheduler.forward_backward_step(
|
|
model_chunk=local_chunk,
|
|
data_iter=iter(data_iter),
|
|
criterion=criterion,
|
|
optimizer=optimizer_pp,
|
|
return_loss=True,
|
|
return_outputs=True,
|
|
)
|
|
|
|
optimizer_pp.step()
|
|
|
|
##########################
|
|
# Fwd bwd for base
|
|
##########################
|
|
# fwd & bwd
|
|
output_base = model_base(input_base[0])
|
|
loss_base = criterion(output_base)
|
|
loss_base.backward()
|
|
optimizer_base.step()
|
|
print(f"After base fwd & bwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;")
|
|
|
|
##########################
|
|
# assert weight
|
|
##########################
|
|
if rank == 0:
|
|
# layer 0
|
|
assert_close(local_chunk[0].weight, model_base.layers[0].weight)
|
|
assert_close(local_chunk[0].weight.grad, model_base.layers[0].weight.grad)
|
|
# layer 7
|
|
assert_close(local_chunk[1].weight, model_base.layers[7].weight)
|
|
assert_close(local_chunk[1].weight.grad, model_base.layers[7].weight.grad)
|
|
if rank == 1:
|
|
# layer 1
|
|
assert_close(local_chunk[0].weight, model_base.layers[1].weight)
|
|
assert_close(local_chunk[0].weight.grad, model_base.layers[1].weight.grad)
|
|
# layer 6
|
|
assert_close(local_chunk[1].weight, model_base.layers[6].weight)
|
|
assert_close(local_chunk[1].weight.grad, model_base.layers[6].weight.grad)
|
|
if rank == 2:
|
|
# layer 2
|
|
assert_close(local_chunk[0].weight, model_base.layers[2].weight)
|
|
assert_close(local_chunk[0].weight.grad, model_base.layers[2].weight.grad)
|
|
# layer 5
|
|
assert_close(local_chunk[1].weight, model_base.layers[5].weight)
|
|
assert_close(local_chunk[1].weight.grad, model_base.layers[5].weight.grad)
|
|
if rank == 3:
|
|
# layer 3
|
|
assert_close(local_chunk[0].weight, model_base.layers[3].weight)
|
|
assert_close(local_chunk[0].weight.grad, model_base.layers[3].weight.grad)
|
|
# layer 4
|
|
assert_close(local_chunk[1].weight, model_base.layers[4].weight)
|
|
assert_close(local_chunk[1].weight.grad, model_base.layers[4].weight.grad)
|
|
|
|
|
|
# 2) add optimizer base 1)
|
|
@parameterize(
|
|
"test_config",
|
|
[
|
|
{
|
|
"batch_size": 8,
|
|
"tp_size": 1,
|
|
"pp_size": 4,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 1,
|
|
"precision": "bf16",
|
|
"num_model_chunk": 2,
|
|
},
|
|
{
|
|
"batch_size": 8,
|
|
"tp_size": 1,
|
|
"pp_size": 4,
|
|
"num_microbatches": 8,
|
|
"zero_stage": 1,
|
|
"precision": "bf16",
|
|
"num_model_chunk": 2,
|
|
},
|
|
],
|
|
)
|
|
def run_fwd_bwd_vschedule_with_optim(test_config):
|
|
# init dist
|
|
rank = dist.get_rank()
|
|
pp_size = test_config["pp_size"]
|
|
pg_mesh = ProcessGroupMesh(pp_size)
|
|
num_microbatch = test_config["num_microbatches"]
|
|
num_model_chunk = test_config["num_model_chunk"]
|
|
# stage_manager
|
|
stage_manager = PipelineStageManager(
|
|
pg_mesh, pipeline_axis=0, enable_interleave=True, num_model_chunks=num_model_chunk, use_zbv=True
|
|
)
|
|
|
|
h, a, s = 4096, 32, 1024
|
|
mem_f = 34 * h + 5 * a * s
|
|
mem_w = -32 * h
|
|
mem_b = -mem_w - mem_f
|
|
graph = PipelineGraph(
|
|
n_stage=pp_size,
|
|
n_micro=num_microbatch,
|
|
f_cost=1,
|
|
b_cost=1,
|
|
w_cost=1,
|
|
c_cost=1,
|
|
f_mem=mem_f,
|
|
b_mem=mem_b,
|
|
w_mem=mem_w,
|
|
# max_mem=mem_f * (p * 2 + m_offset),
|
|
)
|
|
|
|
zbv_schedule = graph.get_v_schedule()
|
|
|
|
scheduler = ZeroBubbleVPipeScheduler(
|
|
schedule=zbv_schedule, # hint: send whole schedule or local schedule only ?
|
|
stage_manager=stage_manager,
|
|
num_model_chunks=num_model_chunk,
|
|
num_microbatch=num_microbatch,
|
|
overlap_p2p=False,
|
|
)
|
|
|
|
# init loss func
|
|
def criterion(x, *args, **kwargs):
|
|
x = x["hidden_states"]
|
|
return (x * x).mean()
|
|
|
|
def criterion_base(x, *args, **kwargs):
|
|
return (x * x).mean()
|
|
|
|
# init model and input
|
|
batch_size = test_config["batch_size"]
|
|
num_layers = 8
|
|
assert num_layers % num_model_chunk == 0, f"Model with {num_layers} layer can not dist on {num_model_chunk} chunk"
|
|
in_dim = out_dim = 1024
|
|
before_init_memory = torch.cuda.memory_allocated() / 1024**3
|
|
print(f"Before init Model: {before_init_memory :.3f} GB on device {stage_manager.get_rank()};")
|
|
model = MlpModel(in_dim=in_dim, out_dim=out_dim, num_layers=num_layers).to(rank)
|
|
data_iter = {"data": torch.rand(batch_size, in_dim, out_dim, requires_grad=True).to(rank)}
|
|
input_base = {k: v.clone() for k, v in data_iter.items()}
|
|
model_base = deepcopy(model)
|
|
model_pp = deepcopy(model)
|
|
layers_per_stage = stage_manager.distribute_layers(len(model.layers))
|
|
stage_manager.stage_indices = stage_manager.get_stage_index(layers_per_stage)
|
|
|
|
model_pp._forward = model_pp.forward
|
|
|
|
model_pp.forward = partial(model_pp._forward, stage_mgr=stage_manager)
|
|
|
|
# init optimizer
|
|
optimizer_base = torch.optim.SGD(model_base.parameters(), momentum=0.1, lr=1e-5)
|
|
optimizer_pp = OptimizerWrapper(torch.optim.SGD(model_pp.parameters(), momentum=0.1, lr=1e-5))
|
|
|
|
after_init_memory = torch.cuda.memory_allocated() / 1024**3
|
|
print(f"After init Model & input: {after_init_memory :.5f} GB on device {stage_manager.get_rank()};")
|
|
|
|
torch.cuda.synchronize()
|
|
result = scheduler.forward_backward_step(
|
|
model_chunk=model_pp,
|
|
data_iter=iter([data_iter]),
|
|
criterion=criterion,
|
|
optimizer=optimizer_pp,
|
|
return_loss=True,
|
|
return_outputs=True,
|
|
)
|
|
|
|
optimizer_pp.step()
|
|
|
|
after_pp_step_memory = torch.cuda.memory_allocated() / 1024**3
|
|
|
|
# assert memory
|
|
if rank != 0:
|
|
# w.grad: hid_dim * hid_dim * microbatch * 4(fp32) * 2 (2 layer in each stage) / 1024**3
|
|
# output: hid_dim * hid_dim * microbatch * 4(fp32) / 1024**3
|
|
# optim: state hid_dim * hid_dim * 4(fp32) * 2 (2 layer in each stage) / 1024**3
|
|
print(
|
|
f" num_microbatch {num_microbatch} rank {rank}: {(after_pp_step_memory - after_init_memory)} <= {(in_dim * in_dim * 4 * 5 * batch_size / 1024**3)}"
|
|
)
|
|
assert (after_pp_step_memory - after_init_memory) <= (in_dim * in_dim * 4 * 5 * batch_size / 1024**3)
|
|
else:
|
|
# rank0 will also hold output;
|
|
print(
|
|
f" num_microbatch {num_microbatch} rank {rank}: {round((after_pp_step_memory - after_init_memory), 5)} <= {round((in_dim * in_dim * 4 * 5 * batch_size / 1024**3 + batch_size * in_dim * in_dim * 4 / 1024**3), 5)}"
|
|
)
|
|
assert round((after_pp_step_memory - after_init_memory), 5) <= round(
|
|
(in_dim * in_dim * 4 * 5 * batch_size / 1024**3 + batch_size * in_dim * in_dim * 4 / 1024**3), 5
|
|
)
|
|
|
|
##########################
|
|
# Fwd bwd for base
|
|
##########################
|
|
# fwd & bwd
|
|
# output_base = model_base(input_base["data"])
|
|
output_base = model_base.forward(data=input_base["data"])
|
|
loss_base = criterion_base(output_base)
|
|
loss_base.backward()
|
|
optimizer_base.step()
|
|
|
|
##########################
|
|
# assert loss & output
|
|
##########################
|
|
# only chunk 1 stage 0 hold loss and output
|
|
if rank == 0:
|
|
assert_close(result["loss"], loss_base)
|
|
assert_close(result["outputs"]["hidden_states"], output_base)
|
|
|
|
# ##########################
|
|
# # assert weight & optim state
|
|
# ##########################
|
|
optim_base_state = optimizer_base.state_dict()["state"]
|
|
optim_pp_state = optimizer_pp.state_dict()["state"]
|
|
optim_base_param_groups = optimizer_base.state_dict()["param_groups"][0]
|
|
optim_pp_param_groups = optimizer_pp.state_dict()["param_groups"][0]
|
|
|
|
if rank == 0:
|
|
# layer 0
|
|
assert_close(model_pp.layers[0].weight, model_base.layers[0].weight)
|
|
assert_close(model_pp.layers[0].weight.grad, model_base.layers[0].weight.grad)
|
|
assert_close(optim_pp_state[0]["momentum_buffer"], optim_base_state[0]["momentum_buffer"])
|
|
# layer 7
|
|
assert_close(model_pp.layers[7].weight, model_base.layers[7].weight)
|
|
assert_close(model_pp.layers[7].weight.grad, model_base.layers[7].weight.grad)
|
|
assert_close(optim_pp_state[7]["momentum_buffer"], optim_base_state[7]["momentum_buffer"])
|
|
if rank == 1:
|
|
# layer 1
|
|
assert_close(model_pp.layers[1].weight, model_base.layers[1].weight)
|
|
assert_close(model_pp.layers[1].weight.grad, model_base.layers[1].weight.grad)
|
|
assert_close(optim_pp_state[1]["momentum_buffer"], optim_base_state[1]["momentum_buffer"])
|
|
# layer 6
|
|
assert_close(model_pp.layers[6].weight, model_base.layers[6].weight)
|
|
assert_close(model_pp.layers[6].weight.grad, model_base.layers[6].weight.grad)
|
|
assert_close(optim_pp_state[6]["momentum_buffer"], optim_base_state[6]["momentum_buffer"])
|
|
if rank == 2:
|
|
# layer 2
|
|
assert_close(model_pp.layers[2].weight, model_base.layers[2].weight)
|
|
assert_close(model_pp.layers[2].weight.grad, model_base.layers[2].weight.grad)
|
|
assert_close(optim_pp_state[2]["momentum_buffer"], optim_base_state[2]["momentum_buffer"])
|
|
# layer 5
|
|
assert_close(model_pp.layers[5].weight, model_base.layers[5].weight)
|
|
assert_close(model_pp.layers[5].weight.grad, model_base.layers[5].weight.grad)
|
|
assert_close(optim_pp_state[5]["momentum_buffer"], optim_base_state[5]["momentum_buffer"])
|
|
if rank == 3:
|
|
# layer 3
|
|
assert_close(model_pp.layers[3].weight, model_base.layers[3].weight)
|
|
assert_close(model_pp.layers[3].weight.grad, model_base.layers[3].weight.grad)
|
|
assert_close(optim_pp_state[3]["momentum_buffer"], optim_base_state[3]["momentum_buffer"])
|
|
# layer 4
|
|
assert_close(model_pp.layers[4].weight, model_base.layers[4].weight)
|
|
assert_close(model_pp.layers[4].weight.grad, model_base.layers[4].weight.grad)
|
|
assert_close(optim_pp_state[4]["momentum_buffer"], optim_base_state[4]["momentum_buffer"])
|
|
|
|
# assert optim param_groups
|
|
assert_optim_param_groups(optim_base_param_groups, optim_pp_param_groups)
|
|
|
|
|
|
@parameterize(
|
|
"config",
|
|
[
|
|
# Pass
|
|
(1, 2, 1, 1, 2),
|
|
(1, 1, 2, 2, 1),
|
|
(1, 2, 1, 2, 1),
|
|
(1, 2, 2, 1, 1),
|
|
# # TODO: adapt mixtral with no TP Linear
|
|
(0, 1, 4, 1, 1),
|
|
],
|
|
)
|
|
def run_with_booster_moehybridplugin(config: Tuple[int, ...]):
|
|
test_config = config
|
|
stage, ep_size, pp_size, tp_size, sp_size = config
|
|
num_microbatches = pp_size
|
|
dist.get_world_size()
|
|
rank = dist.get_rank()
|
|
dtype, precision = torch.float16, "fp16"
|
|
torch.cuda.set_device(dist.get_rank())
|
|
|
|
########
|
|
# init base model
|
|
########
|
|
assert pp_size <= NUM_LAYERS, "pp_size should be less than or equal to NUM_LAYERS"
|
|
config = MixtralConfig(
|
|
hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
|
|
intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
|
|
num_hidden_layers=NUM_LAYERS,
|
|
num_attention_heads=NUM_HEADS,
|
|
num_key_value_heads=NUM_HEADS,
|
|
num_local_experts=NUM_EXPERTS,
|
|
num_experts_per_tok=TOP_K,
|
|
attn_implementation="flash_attention_2",
|
|
)
|
|
|
|
# init model with the same seed
|
|
seed_all(10086)
|
|
|
|
torch_model = MixtralModel(config).to(dtype).cuda()
|
|
# TODO: Support MixtralForCausalLM
|
|
# torch_model = MixtralForCausalLM(config).to(dtype).cuda()
|
|
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
|
|
# init schedule
|
|
h, a, s = config.hidden_size, config.num_attention_heads, 1024
|
|
mem_f = 34 * h + 5 * a * s
|
|
mem_w = -32 * h
|
|
mem_b = -mem_w - mem_f
|
|
graph = PipelineGraph(
|
|
n_stage=pp_size,
|
|
n_micro=num_microbatches,
|
|
f_cost=1,
|
|
b_cost=1,
|
|
w_cost=1,
|
|
c_cost=1,
|
|
f_mem=mem_f,
|
|
b_mem=mem_b,
|
|
w_mem=mem_w,
|
|
# max_mem=mem_f * (p * 2 + m_offset),
|
|
)
|
|
|
|
zbv_schedule = graph.get_v_schedule()
|
|
|
|
# init MoeHybridPlugin
|
|
plugin = MoeHybridParallelPlugin(
|
|
pp_size=pp_size,
|
|
num_microbatches=pp_size,
|
|
tp_size=tp_size,
|
|
sp_size=sp_size,
|
|
ep_size=ep_size,
|
|
zero_stage=stage,
|
|
enable_sequence_parallelism=sp_size > 1,
|
|
sequence_parallelism_mode="all_to_all" if sp_size > 1 else None,
|
|
overlap_communication=False,
|
|
initial_scale=1,
|
|
precision=precision,
|
|
find_unused_parameters=True,
|
|
pp_style="zbv",
|
|
scheduler_nodes=zbv_schedule,
|
|
num_model_chunks=2,
|
|
)
|
|
|
|
dp_size = plugin.dp_size
|
|
|
|
booster = Booster(plugin=plugin)
|
|
|
|
########
|
|
# init pp model
|
|
########
|
|
|
|
parallel_model = deepcopy(torch_model)
|
|
parallel_optimizer = torch.optim.SGD(parallel_model.parameters(), lr=1)
|
|
parallel_model, parallel_optimizer, _, _, _ = booster.boost(parallel_model, parallel_optimizer)
|
|
# create different input along dp axis
|
|
seed_all(1453 + rank)
|
|
|
|
torch_model.train()
|
|
parallel_model.train()
|
|
for _ in range(2):
|
|
# gen random input
|
|
input_embeddings = torch.rand(
|
|
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
|
|
).cuda()
|
|
dist.all_reduce(
|
|
input_embeddings, group=plugin.pp_group
|
|
) # pp inputs except the first stage doesn't matter, but need to be replicate for torch model check
|
|
|
|
dist.all_reduce(input_embeddings, group=plugin.tp_group) # tp group duplicate input
|
|
dist.all_reduce(input_embeddings, group=plugin.sp_group) # sp group duplicate input
|
|
|
|
# run the model with hybrid parallel
|
|
if booster.plugin.stage_manager is not None:
|
|
# for test with pp
|
|
data_iter = iter([{"inputs_embeds": input_embeddings}])
|
|
sharded_output = booster.execute_pipeline(
|
|
data_iter,
|
|
parallel_model,
|
|
lambda x, y: x.last_hidden_state.mean(),
|
|
parallel_optimizer,
|
|
return_loss=True,
|
|
return_outputs=True,
|
|
)
|
|
# stage 0 chunk 0
|
|
if (
|
|
booster.plugin.stage_manager.is_first_stage(ignore_chunk=True)
|
|
and rank == dist.get_process_group_ranks(plugin.pp_group)[0]
|
|
):
|
|
parallel_output = sharded_output["loss"]
|
|
else:
|
|
parallel_output = torch.tensor(12345.0, device="cuda")
|
|
print(f"rank {dist.get_rank()} parallel_output {parallel_output}")
|
|
# broadcast along pp axis
|
|
dist.broadcast(parallel_output, src=dist.get_process_group_ranks(plugin.pp_group)[0], group=plugin.pp_group)
|
|
|
|
else:
|
|
# for test without pp
|
|
parallel_output = parallel_model(inputs_embeds=input_embeddings.to(dtype)).last_hidden_state.mean()
|
|
parallel_optimizer.backward(parallel_output)
|
|
parallel_optimizer.step()
|
|
parallel_optimizer.zero_grad()
|
|
dist.all_reduce(parallel_output, group=plugin.dp_group)
|
|
|
|
# ===================================================================================
|
|
# run normal model with all dp(different) inputs
|
|
all_inputs = [input_embeddings.clone() for _ in range(dp_size)]
|
|
dist.all_gather(all_inputs, input_embeddings, group=plugin.dp_group)
|
|
torch_output_sum = 0
|
|
for input_data_ in all_inputs:
|
|
torch_output = torch_model(inputs_embeds=input_data_.to(dtype)).last_hidden_state.mean()
|
|
torch_output.backward()
|
|
torch_output_sum += torch_output.detach()
|
|
# avg dp grads follows zero optimizer
|
|
for p in torch_model.parameters():
|
|
if p.grad is not None:
|
|
p.grad /= dp_size
|
|
torch_optimizer.step()
|
|
torch_optimizer.zero_grad()
|
|
assert_loose_close(parallel_output, torch_output_sum, dtype=dtype)
|
|
print(f"rank {dist.get_rank()} config {test_config} test passed")
|
|
clear_layout_converter()
|
|
Randomizer.reset_index()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
@parameterize(
|
|
"config",
|
|
[
|
|
# Pass
|
|
(1, 2, 2, 1),
|
|
(1, 2, 1, 2),
|
|
(1, 1, 2, 2),
|
|
# TODO: support overlap p2p in pp4
|
|
(1, 4, 1, 1),
|
|
],
|
|
)
|
|
def run_with_booster_hybridplugin(config: Tuple[int, ...]):
|
|
stage, pp_size, tp_size, sp_size = config
|
|
num_microbatches = pp_size
|
|
dist.get_world_size()
|
|
rank = dist.get_rank()
|
|
dtype, precision = torch.float16, "fp16"
|
|
torch.cuda.set_device(dist.get_rank())
|
|
|
|
########
|
|
# init base model
|
|
########
|
|
assert pp_size <= NUM_LAYERS, "pp_size should be less than or equal to NUM_LAYERS"
|
|
config = LlamaConfig(
|
|
hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
|
|
intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
|
|
num_hidden_layers=NUM_LAYERS,
|
|
num_attention_heads=NUM_HEADS,
|
|
num_key_value_heads=NUM_HEADS,
|
|
attn_implementation="flash_attention_2",
|
|
)
|
|
|
|
# init model with the same seed
|
|
seed_all(10086)
|
|
|
|
torch_model = LlamaModel(config).to(dtype).cuda()
|
|
# TODO: Support MixtralForCausalLM
|
|
# torch_model = MixtralForCausalLM(config).to(dtype).cuda()
|
|
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
|
|
# init schedule
|
|
h, a, s = config.hidden_size, config.num_attention_heads, 1024
|
|
mem_f = 34 * h + 5 * a * s
|
|
mem_w = -32 * h
|
|
mem_b = -mem_w - mem_f
|
|
graph = PipelineGraph(
|
|
n_stage=pp_size,
|
|
n_micro=num_microbatches,
|
|
f_cost=1,
|
|
b_cost=1,
|
|
w_cost=1,
|
|
c_cost=1,
|
|
f_mem=mem_f,
|
|
b_mem=mem_b,
|
|
w_mem=mem_w,
|
|
)
|
|
|
|
zbv_schedule = graph.get_v_schedule()
|
|
|
|
# init HybridParallelPlugin
|
|
plugin = HybridParallelPlugin(
|
|
pp_size=pp_size,
|
|
num_microbatches=pp_size,
|
|
tp_size=tp_size,
|
|
sp_size=sp_size,
|
|
zero_stage=stage,
|
|
enable_sequence_parallelism=sp_size > 1,
|
|
sequence_parallelism_mode="all_to_all" if sp_size > 1 else None,
|
|
overlap_communication=False,
|
|
initial_scale=1,
|
|
precision=precision,
|
|
find_unused_parameters=True,
|
|
pp_style="zbv",
|
|
scheduler_nodes=zbv_schedule,
|
|
num_model_chunks=2,
|
|
)
|
|
|
|
dp_size = plugin.dp_size
|
|
|
|
booster = Booster(plugin=plugin)
|
|
|
|
########
|
|
# init pp model
|
|
########
|
|
|
|
parallel_model = deepcopy(torch_model)
|
|
parallel_optimizer = torch.optim.SGD(parallel_model.parameters(), lr=1)
|
|
parallel_model, parallel_optimizer, _, _, _ = booster.boost(parallel_model, parallel_optimizer)
|
|
# create different input along dp axis
|
|
seed_all(1453 + rank)
|
|
|
|
torch_model.train()
|
|
parallel_model.train()
|
|
for _ in range(2):
|
|
# gen random input
|
|
input_embeddings = torch.rand(
|
|
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
|
|
).cuda()
|
|
dist.all_reduce(
|
|
input_embeddings, group=plugin.pp_group
|
|
) # pp inputs except the first stage doesn't matter, but need to be replicate for torch model check
|
|
|
|
dist.all_reduce(input_embeddings, group=plugin.tp_group) # tp group duplicate input
|
|
dist.all_reduce(input_embeddings, group=plugin.sp_group) # sp group duplicate input
|
|
|
|
# run the model with hybrid parallel
|
|
if booster.plugin.stage_manager is not None:
|
|
# for test with pp
|
|
data_iter = iter([{"inputs_embeds": input_embeddings}])
|
|
sharded_output = booster.execute_pipeline(
|
|
data_iter,
|
|
parallel_model,
|
|
lambda x, y: x.last_hidden_state.mean(),
|
|
parallel_optimizer,
|
|
return_loss=True,
|
|
return_outputs=True,
|
|
)
|
|
# stage 0 chunk 0
|
|
if (
|
|
booster.plugin.stage_manager.is_first_stage(ignore_chunk=True)
|
|
and rank == dist.get_process_group_ranks(plugin.pp_group)[0]
|
|
):
|
|
parallel_output = sharded_output["loss"]
|
|
else:
|
|
parallel_output = torch.tensor(12345.0, device="cuda")
|
|
# broadcast along pp axis
|
|
dist.broadcast(parallel_output, src=dist.get_process_group_ranks(plugin.pp_group)[0], group=plugin.pp_group)
|
|
|
|
else:
|
|
# for test without pp
|
|
parallel_output = parallel_model(inputs_embeds=input_embeddings.to(dtype)).last_hidden_state.mean()
|
|
parallel_optimizer.backward(parallel_output)
|
|
parallel_optimizer.step()
|
|
parallel_optimizer.zero_grad()
|
|
dist.all_reduce(parallel_output, group=plugin.dp_group)
|
|
|
|
# ===================================================================================
|
|
# run normal model with all dp(different) inputs
|
|
all_inputs = [input_embeddings.clone() for _ in range(dp_size)]
|
|
dist.all_gather(all_inputs, input_embeddings, group=plugin.dp_group)
|
|
torch_output_sum = 0
|
|
# torch_model.apply(register_hooks) # register hook for base model
|
|
for input_data_ in all_inputs:
|
|
torch_output = torch_model(inputs_embeds=input_data_.to(dtype)).last_hidden_state.mean()
|
|
torch_output.backward()
|
|
torch_output_sum += torch_output.detach()
|
|
# avg dp grads follows zero optimizer
|
|
for p in torch_model.parameters():
|
|
if p.grad is not None:
|
|
p.grad /= dp_size
|
|
torch_optimizer.step()
|
|
torch_optimizer.zero_grad()
|
|
|
|
print(f"parallel_output {parallel_output}, torch_output_sum {torch_output_sum}")
|
|
assert_loose_close(parallel_output, torch_output_sum, dtype=dtype)
|
|
print(f"rank {dist.get_rank()} pp_size:{pp_size}, tp_size {tp_size}, sp_size :{sp_size} test passed")
|
|
clear_layout_converter()
|
|
Randomizer.reset_index()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
disable_existing_loggers()
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
run_with_booster_moehybridplugin()
|
|
run_with_booster_hybridplugin()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@rerun_if_address_is_in_use()
|
|
def test_pp():
|
|
spawn(
|
|
run_dist,
|
|
nprocs=4,
|
|
)
|
|
|
|
|
|
# python -m pytest -s tests/test_pipeline/test_schedule/test_zerobubble_pp.py
|
|
if __name__ == "__main__":
|
|
test_pp()
|