ColossalAI/README.md

294 lines
10 KiB
Markdown
Raw Normal View History

# Colossal-AI
2022-03-11 05:53:38 +00:00
<div id="top" align="center">
2022-03-11 05:53:38 +00:00
[![logo](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/Colossal-AI_logo.png)](https://www.colossalai.org/)
2022-05-30 15:06:49 +00:00
Colossal-AI: A Unified Deep Learning System for Big Model Era
<h3> <a href="https://arxiv.org/abs/2110.14883"> Paper </a> |
<a href="https://www.colossalai.org/"> Documentation </a> |
<a href="https://github.com/hpcaitech/ColossalAI-Examples"> Examples </a> |
<a href="https://github.com/hpcaitech/ColossalAI/discussions"> Forum </a> |
2022-03-11 05:53:38 +00:00
<a href="https://medium.com/@hpcaitech"> Blog </a></h3>
2022-02-14 09:22:48 +00:00
2022-03-13 01:11:48 +00:00
[![Build](https://github.com/hpcaitech/ColossalAI/actions/workflows/build.yml/badge.svg)](https://github.com/hpcaitech/ColossalAI/actions/workflows/build.yml)
[![Documentation](https://readthedocs.org/projects/colossalai/badge/?version=latest)](https://colossalai.readthedocs.io/en/latest/?badge=latest)
[![CodeFactor](https://www.codefactor.io/repository/github/hpcaitech/colossalai/badge)](https://www.codefactor.io/repository/github/hpcaitech/colossalai)
2022-03-14 09:07:01 +00:00
[![HuggingFace badge](https://img.shields.io/badge/%F0%9F%A4%97HuggingFace-Join-yellow)](https://huggingface.co/hpcai-tech)
2022-03-04 10:04:51 +00:00
[![slack badge](https://img.shields.io/badge/Slack-join-blueviolet?logo=slack&amp)](https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-z7b26eeb-CBp7jouvu~r0~lcFzX832w)
2022-03-11 05:53:38 +00:00
[![WeChat badge](https://img.shields.io/badge/微信-加入-green?logo=wechat&amp)](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png)
2022-03-14 09:07:01 +00:00
2022-02-18 08:28:37 +00:00
| [English](README.md) | [中文](README-zh-Hans.md) |
2022-03-11 05:53:38 +00:00
</div>
2021-10-29 01:29:20 +00:00
2022-03-11 05:53:38 +00:00
## Table of Contents
<ul>
2022-04-12 05:41:56 +00:00
<li><a href="#Why-Colossal-AI">Why Colossal-AI</a> </li>
2022-03-11 05:53:38 +00:00
<li><a href="#Features">Features</a> </li>
<li>
2022-05-30 15:06:49 +00:00
<a href="#Parallel-Training-Demo">Parallel Training Demo</a>
2022-03-11 05:53:38 +00:00
<ul>
<li><a href="#ViT">ViT</a></li>
<li><a href="#GPT-3">GPT-3</a></li>
<li><a href="#GPT-2">GPT-2</a></li>
<li><a href="#BERT">BERT</a></li>
2022-04-08 10:42:12 +00:00
<li><a href="#PaLM">PaLM</a></li>
2022-07-20 07:02:07 +00:00
<li><a href="#OPT">OPT</a></li>
2022-03-11 05:53:38 +00:00
</ul>
</li>
<li>
2022-05-30 15:06:49 +00:00
<a href="#Single-GPU-Training-Demo">Single GPU Training Demo</a>
<ul>
<li><a href="#GPT-2-Single">GPT-2</a></li>
<li><a href="#PaLM-Single">PaLM</a></li>
</ul>
</li>
2022-05-30 15:06:49 +00:00
<li>
2022-05-31 11:57:39 +00:00
<a href="#Inference-Energon-AI-Demo">Inference (Energon-AI) Demo</a>
2022-05-30 15:06:49 +00:00
<ul>
<li><a href="#GPT-3-Inference">GPT-3</a></li>
</ul>
</li>
2022-03-11 05:53:38 +00:00
<li>
<a href="#Installation">Installation</a>
<ul>
<li><a href="#PyPI">PyPI</a></li>
<li><a href="#Install-From-Source">Install From Source</a></li>
</ul>
</li>
<li><a href="#Use-Docker">Use Docker</a></li>
<li><a href="#Community">Community</a></li>
<li><a href="#contributing">Contributing</a></li>
<li><a href="#Quick-View">Quick View</a></li>
<ul>
<li><a href="#Start-Distributed-Training-in-Lines">Start Distributed Training in Lines</a></li>
<li><a href="#Write-a-Simple-2D-Parallel-Model">Write a Simple 2D Parallel Model</a></li>
</ul>
<li><a href="#Cite-Us">Cite Us</a></li>
</ul>
2022-02-18 08:28:37 +00:00
2022-04-12 05:41:56 +00:00
## Why Colossal-AI
<div align="center">
<a href="https://youtu.be/KnXSfjqkKN0">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/JamesDemmel_Colossal-AI.png" width="600" />
</a>
2022-07-30 14:11:07 +00:00
Prof. James Demmel (UC Berkeley): Colossal-AI makes training AI models efficient, easy, and scalable.
2022-04-12 05:41:56 +00:00
</div>
<p align="right">(<a href="#top">back to top</a>)</p>
2022-02-18 08:28:37 +00:00
## Features
2022-05-30 15:06:49 +00:00
Colossal-AI provides a collection of parallel components for you. We aim to support you to write your
2022-03-25 04:12:05 +00:00
distributed deep learning models just like how you write your model on your laptop. We provide user-friendly tools to kickstart
2022-05-30 15:06:49 +00:00
distributed training and inference in a few lines.
2022-02-18 08:28:37 +00:00
- Parallelism strategies
- Data Parallelism
- Pipeline Parallelism
2022-04-14 13:04:51 +00:00
- 1D, [2D](https://arxiv.org/abs/2104.05343), [2.5D](https://arxiv.org/abs/2105.14500), [3D](https://arxiv.org/abs/2105.14450) Tensor Parallelism
- [Sequence Parallelism](https://arxiv.org/abs/2105.13120)
2022-05-21 10:31:11 +00:00
- [Zero Redundancy Optimizer (ZeRO)](https://arxiv.org/abs/1910.02054)
2022-07-17 02:00:59 +00:00
- Heterogeneous Memory Management
- [PatrickStar](https://arxiv.org/abs/2108.05818)
- Friendly Usage
2022-04-14 13:04:51 +00:00
- Parallelism based on configuration file
2022-02-18 08:28:37 +00:00
2022-05-30 15:06:49 +00:00
- Inference
- [Energon-AI](https://github.com/hpcaitech/EnergonAI)
2022-03-11 05:53:38 +00:00
<p align="right">(<a href="#top">back to top</a>)</p>
2022-05-30 15:06:49 +00:00
## Parallel Training Demo
2022-02-18 08:28:37 +00:00
### ViT
<p align="center">
2022-03-10 05:32:56 +00:00
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/ViT.png" width="450" />
</p>
2022-02-18 08:28:37 +00:00
2022-03-25 04:12:05 +00:00
- 14x larger batch size, and 5x faster training for Tensor Parallelism = 64
2022-02-18 08:28:37 +00:00
### GPT-3
<p align="center">
2022-07-12 07:47:00 +00:00
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/GPT3-v5.png" width=700/>
</p>
2022-02-18 08:28:37 +00:00
2022-03-25 04:12:05 +00:00
- Save 50% GPU resources, and 10.7% acceleration
### GPT-2
2022-03-10 05:32:56 +00:00
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/GPT2.png" width=800/>
2022-03-25 04:12:05 +00:00
- 11x lower GPU memory consumption, and superlinear scaling efficiency with Tensor Parallelism
2022-04-04 05:47:43 +00:00
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/(updated)GPT-2.png" width=800>
2022-04-04 05:47:43 +00:00
- 24x larger model size on the same hardware
- over 3x acceleration
2022-02-18 08:28:37 +00:00
### BERT
2022-03-10 05:32:56 +00:00
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/BERT.png" width=800/>
2022-02-18 08:28:37 +00:00
- 2x faster training, or 50% longer sequence length
2022-02-18 08:28:37 +00:00
2022-04-08 10:26:59 +00:00
### PaLM
- [PaLM-colossalai](https://github.com/hpcaitech/PaLM-colossalai): Scalable implementation of Google's Pathways Language Model ([PaLM](https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html)).
2022-07-20 07:02:07 +00:00
### OPT
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/OPT.png" width=800/>
- [Open Pretrained Transformer (OPT)](https://github.com/facebookresearch/metaseq), a 175-Billion parameter AI language model released by Meta, which stimulates AI programmers to perform various downstream tasks and application deployments because public pretrained model weights.
- 40% speedup fine-tuning OPT at low cost in lines. [[Example]](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/language/opt)
Please visit our [documentation](https://www.colossalai.org/) and [examples](https://github.com/hpcaitech/ColossalAI-Examples) for more details.
2022-02-18 08:28:37 +00:00
2022-03-11 05:53:38 +00:00
<p align="right">(<a href="#top">back to top</a>)</p>
2022-02-18 08:28:37 +00:00
2022-05-30 15:06:49 +00:00
## Single GPU Training Demo
### GPT-2
<p id="GPT-2-Single" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/GPT2-GPU1.png" width=450/>
</p>
- 20x larger model size on the same hardware
### PaLM
<p id="PaLM-Single" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/PaLM-GPU1.png" width=450/>
</p>
- 34x larger model size on the same hardware
<p align="right">(<a href="#top">back to top</a>)</p>
2022-05-30 15:06:49 +00:00
2022-05-31 11:57:39 +00:00
## Inference (Energon-AI) Demo
2022-05-30 15:06:49 +00:00
### GPT-3
<p id="GPT-3-Inference" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/inference_GPT-3.jpg" width=800/>
</p>
- [Energon-AI](https://github.com/hpcaitech/EnergonAI): 50% inference acceleration on the same hardware
<p align="right">(<a href="#top">back to top</a>)</p>
2021-10-28 16:21:23 +00:00
## Installation
### Download From Official Releases
2022-02-14 09:09:30 +00:00
2022-05-18 10:05:18 +00:00
You can visit the [Download](https://www.colossalai.org/download) page to download Colossal-AI with pre-built CUDA extensions.
2022-02-14 09:09:30 +00:00
### Download From Source
2022-02-14 09:09:30 +00:00
> The version of Colossal-AI will be in line with the main branch of the repository. Feel free to raise an issue if you encounter any problem. :)
2021-10-28 16:21:23 +00:00
```shell
git clone https://github.com/hpcaitech/ColossalAI.git
2021-10-28 16:21:23 +00:00
cd ColossalAI
2021-10-28 16:21:23 +00:00
# install dependency
pip install -r requirements/requirements.txt
# install colossalai
pip install .
```
2022-02-14 09:09:30 +00:00
If you don't want to install and enable CUDA kernel fusion (compulsory installation when using fused optimizer):
2021-10-28 16:21:23 +00:00
```shell
NO_CUDA_EXT=1 pip install .
2021-10-28 16:21:23 +00:00
```
2022-03-11 05:53:38 +00:00
<p align="right">(<a href="#top">back to top</a>)</p>
2022-03-04 10:04:51 +00:00
2022-01-18 05:35:18 +00:00
## Use Docker
### Pull from DockerHub
You can directly pull the docker image from our [DockerHub page](https://hub.docker.com/r/hpcaitech/colossalai). The image is automatically uploaded upon release.
### Build On Your Own
2022-01-18 05:35:18 +00:00
Run the following command to build a docker image from Dockerfile provided.
> Building Colossal-AI from scratch requires GPU support, you need to use Nvidia Docker Runtime as the default when doing `docker build`. More details can be found [here](https://stackoverflow.com/questions/59691207/docker-build-with-nvidia-runtime).
> We recommend you install Colossal-AI from our [project page](https://www.colossalai.org) directly.
2022-01-18 05:35:18 +00:00
```bash
cd ColossalAI
docker build -t colossalai ./docker
```
Run the following command to start the docker container in interactive mode.
```bash
docker run -ti --gpus all --rm --ipc=host colossalai bash
```
2022-03-11 05:53:38 +00:00
<p align="right">(<a href="#top">back to top</a>)</p>
2022-03-04 10:04:51 +00:00
## Community
Join the Colossal-AI community on [Forum](https://github.com/hpcaitech/ColossalAI/discussions),
[Slack](https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-z7b26eeb-CBp7jouvu~r0~lcFzX832w),
2022-03-25 04:12:05 +00:00
and [WeChat](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png "qrcode") to share your suggestions, feedback, and questions with our engineering team.
2022-03-04 10:04:51 +00:00
2022-02-14 09:22:48 +00:00
## Contributing
2022-03-04 10:04:51 +00:00
If you wish to contribute to this project, please follow the guideline in [Contributing](./CONTRIBUTING.md).
Thanks so much to all of our amazing contributors!
2022-02-14 09:22:48 +00:00
2022-03-04 10:04:51 +00:00
<a href="https://github.com/hpcaitech/ColossalAI/graphs/contributors"><img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/contributor_avatar.png" width="800px"></a>
*The order of contributor avatars is randomly shuffled.*
2022-02-14 09:22:48 +00:00
2022-03-11 05:53:38 +00:00
<p align="right">(<a href="#top">back to top</a>)</p>
2021-10-28 16:21:23 +00:00
## Quick View
### Start Distributed Training in Lines
```python
parallel = dict(
pipeline=2,
tensor=dict(mode='2.5d', depth = 1, size=4)
2021-12-10 06:37:33 +00:00
)
2021-10-28 16:21:23 +00:00
```
### Start Heterogeneous Training in Lines
2021-10-28 16:21:23 +00:00
```python
zero = dict(
model_config=dict(
tensor_placement_policy='auto',
shard_strategy=TensorShardStrategy(),
reuse_fp16_shard=True
),
optimizer_config=dict(initial_scale=2**5, gpu_margin_mem_ratio=0.2)
)
2021-10-28 16:21:23 +00:00
```
2022-03-11 05:53:38 +00:00
<p align="right">(<a href="#top">back to top</a>)</p>
2021-10-28 16:21:23 +00:00
## Cite Us
2021-10-28 16:21:23 +00:00
```
@article{bian2021colossal,
title={Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training},
author={Bian, Zhengda and Liu, Hongxin and Wang, Boxiang and Huang, Haichen and Li, Yongbin and Wang, Chuanrui and Cui, Fan and You, Yang},
journal={arXiv preprint arXiv:2110.14883},
year={2021}
}
```
2022-03-11 05:53:38 +00:00
2022-07-17 02:00:59 +00:00
<p align="right">(<a href="#top">back to top</a>)</p>