update results on a single GPU, highlight quick view (#981)

pull/982/head
binmakeswell 2022-05-16 21:14:35 +08:00 committed by GitHub
parent c2fdc6a011
commit 7471f97fc3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 93 additions and 173 deletions

View File

@ -28,7 +28,7 @@
<li><a href="#为何选择-Colossal-AI">为何选择 Colossal-AI</a> </li>
<li><a href="#特点">特点</a> </li>
<li>
<a href="#展示样例">展示样例</a>
<a href="#并行样例展示">并行样例展示</a>
<ul>
<li><a href="#ViT">ViT</a></li>
<li><a href="#GPT-3">GPT-3</a></li>
@ -37,6 +37,13 @@
<li><a href="#PaLM">PaLM</a></li>
</ul>
</li>
<li>
<a href="#单GPU样例展示">单GPU样例展示</a>
<ul>
<li><a href="#GPT-2-Single">GPT-2</a></li>
<li><a href="#PaLM-Single">PaLM</a></li>
</ul>
</li>
<li>
<a href="#安装">安装</a>
@ -83,7 +90,7 @@ Colossal-AI 为您提供了一系列并行训练组件。我们的目标是让
- 基于参数文件的并行化
<p align="right">(<a href="#top">返回顶端</a>)</p>
## 展示样例
## 并行样例展示
### ViT
<p align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/ViT.png" width="450" />
@ -120,43 +127,49 @@ Colossal-AI 为您提供了一系列并行训练组件。我们的目标是让
<p align="right">(<a href="#top">返回顶端</a>)</p>
## 单GPU样例展示
### GPT-2
<p id="GPT-2-Single" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/GPT2-GPU1.png" width=450/>
</p>
- 用相同的硬件条件训练20倍大的模型
### PaLM
<p id="PaLM-Single" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/PaLM-GPU1.png" width=450/>
</p>
- 用相同的硬件条件训练34倍大的模型
<p align="right">(<a href="#top">back to top</a>)</p>
## 安装
### PyPI
### 从官方安装
```bash
pip install colossalai
```
该命令将会安装 CUDA extension, 如果你已安装 CUDA, NVCC 和 torch。
您可以访问我们[下载](/download)页面来安装Colossal-AI在这个页面上发布的版本都预编译了CUDA扩展。
如果你不想安装 CUDA extension, 可在命令中添加`--global-option="--no_cuda_ext"`, 例如:
```bash
pip install colossalai --global-option="--no_cuda_ext"
```
### 从源安装
如果你想使用 `ZeRO`, 你可以使用:
```bash
pip install colossalai[zero]
```
### 从源代码安装
> Colossal-AI 的版本将与该项目的主分支保持一致。欢迎通过 issue 反馈你遇到的任何问题 :)
> 此文档将与版本库的主分支保持一致。如果您遇到任何问题,欢迎给我们提 issue :)
```shell
git clone https://github.com/hpcaitech/ColossalAI.git
cd ColossalAI
# 安装依赖
# install dependency
pip install -r requirements/requirements.txt
# 安装 colossalai
# install colossalai
pip install .
```
如果你不想安装和使用 CUDA kernel fusion (使用 fused 优化器需安装):
如果您不想安装和启用 CUDA 内核融合(使用融合优化器时强制安装):
```shell
pip install --global-option="--no_cuda_ext" .
NO_CUDA_EXT=1 pip install .
```
<p align="right">(<a href="#top">返回顶端</a>)</p>
@ -201,78 +214,23 @@ docker run -ti --gpus all --rm --ipc=host colossalai bash
### 几行代码开启分布式训练
```python
import colossalai
from colossalai.utils import get_dataloader
# my_config 可以是 config 文件的路径或字典对象
# 'localhost' 仅适用于单节点,在多节点时需指明节点名
colossalai.launch(
config=my_config,
rank=rank,
world_size=world_size,
backend='nccl',
port=29500,
host='localhost'
parallel = dict(
pipeline=2,
tensor=dict(mode='2.5d', depth = 1, size=4)
)
# 构建模型
model = ...
# 构建数据集, dataloader 会默认处理分布式数据 sampler
train_dataset = ...
train_dataloader = get_dataloader(dataset=dataset,
shuffle=True
)
# 构建优化器
optimizer = ...
# 构建损失函数
criterion = ...
# 初始化 colossalai
engine, train_dataloader, _, _ = colossalai.initialize(
model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader
)
# 开始训练
engine.train()
for epoch in range(NUM_EPOCHS):
for data, label in train_dataloader:
engine.zero_grad()
output = engine(data)
loss = engine.criterion(output, label)
engine.backward(loss)
engine.step()
```
### 构建一个简单的2维并行模型
假设我们有一个非常巨大的 MLP 模型,它巨大的 hidden size 使得它难以被单个 GPU 容纳。我们可以将该模型的权重以二维网格的形式分配到多个 GPU 上,且保持你熟悉的模型构建方式。
### 几行代码开启异构训练
```python
from colossalai.nn import Linear2D
import torch.nn as nn
class MLP_2D(nn.Module):
def __init__(self):
super().__init__()
self.linear_1 = Linear2D(in_features=1024, out_features=16384)
self.linear_2 = Linear2D(in_features=16384, out_features=1024)
def forward(self, x):
x = self.linear_1(x)
x = self.linear_2(x)
return x
zero = dict(
model_config=dict(
tensor_placement_policy='auto',
shard_strategy=TensorShardStrategy(),
reuse_fp16_shard=True
),
optimizer_config=dict(initial_scale=2**5, gpu_margin_mem_ratio=0.2)
)
```
<p align="right">(<a href="#top">返回顶端</a>)</p>

128
README.md
View File

@ -28,7 +28,7 @@
<li><a href="#Why-Colossal-AI">Why Colossal-AI</a> </li>
<li><a href="#Features">Features</a> </li>
<li>
<a href="#Demo">Demo</a>
<a href="#Parallel-Demo">Parallel Demo</a>
<ul>
<li><a href="#ViT">ViT</a></li>
<li><a href="#GPT-3">GPT-3</a></li>
@ -37,6 +37,13 @@
<li><a href="#PaLM">PaLM</a></li>
</ul>
</li>
<li>
<a href="#Single-GPU-Demo">Single GPU Demo</a>
<ul>
<li><a href="#GPT-2-Single">GPT-2</a></li>
<li><a href="#PaLM-Single">PaLM</a></li>
</ul>
</li>
<li>
<a href="#Installation">Installation</a>
@ -88,7 +95,7 @@ distributed training in a few lines.
<p align="right">(<a href="#top">back to top</a>)</p>
## Demo
## Parallel Demo
### ViT
<p align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/ViT.png" width="450" />
@ -124,27 +131,39 @@ Please visit our [documentation and tutorials](https://www.colossalai.org/) for
<p align="right">(<a href="#top">back to top</a>)</p>
## Single GPU Demo
### GPT-2
<p id="GPT-2-Single" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/GPT2-GPU1.png" width=450/>
</p>
- 20x larger model size on the same hardware
### PaLM
<p id="PaLM-Single" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/PaLM-GPU1.png" width=450/>
</p>
- 34x larger model size on the same hardware
<p align="right">(<a href="#top">back to top</a>)</p>
## Installation
### PyPI
### Download From Official Releases
```bash
pip install colossalai
```
This command will install CUDA extension if your have installed CUDA, NVCC and torch.
You can visit the [Download](/download) page to download Colossal-AI with pre-built CUDA extensions.
If you don't want to install CUDA extension, you should add `--global-option="--no_cuda_ext"`, like:
```bash
pip install colossalai --global-option="--no_cuda_ext"
```
### Install From Source
### Download From Source
> The version of Colossal-AI will be in line with the main branch of the repository. Feel free to create an issue if you encounter any problems. :-)
> The version of Colossal-AI will be in line with the main branch of the repository. Feel free to raise an issue if you encounter any problem. :)
```shell
git clone https://github.com/hpcaitech/ColossalAI.git
cd ColossalAI
# install dependency
pip install -r requirements/requirements.txt
@ -155,7 +174,7 @@ pip install .
If you don't want to install and enable CUDA kernel fusion (compulsory installation when using fused optimizer):
```shell
pip install --global-option="--no_cuda_ext" .
NO_CUDA_EXT=1 pip install .
```
<p align="right">(<a href="#top">back to top</a>)</p>
@ -200,80 +219,23 @@ Thanks so much to all of our amazing contributors!
### Start Distributed Training in Lines
```python
import colossalai
from colossalai.utils import get_dataloader
# my_config can be path to config file or a dictionary obj
# 'localhost' is only for single node, you need to specify
# the node name if using multiple nodes
colossalai.launch(
config=my_config,
rank=rank,
world_size=world_size,
backend='nccl',
port=29500,
host='localhost'
parallel = dict(
pipeline=2,
tensor=dict(mode='2.5d', depth = 1, size=4)
)
# build your model
model = ...
# build you dataset, the dataloader will have distributed data
# sampler by default
train_dataset = ...
train_dataloader = get_dataloader(dataset=dataset,
shuffle=True
)
# build your optimizer
optimizer = ...
# build your loss function
criterion = ...
# initialize colossalai
engine, train_dataloader, _, _ = colossalai.initialize(
model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader
)
# start training
engine.train()
for epoch in range(NUM_EPOCHS):
for data, label in train_dataloader:
engine.zero_grad()
output = engine(data)
loss = engine.criterion(output, label)
engine.backward(loss)
engine.step()
```
### Write a Simple 2D Parallel Model
Let's say we have a huge MLP model and its very large hidden size makes it difficult to fit into a single GPU. We can
then distribute the model weights across GPUs in a 2D mesh while you still write your model in a familiar way.
### Start Heterogeneous Training in Lines
```python
from colossalai.nn import Linear2D
import torch.nn as nn
class MLP_2D(nn.Module):
def __init__(self):
super().__init__()
self.linear_1 = Linear2D(in_features=1024, out_features=16384)
self.linear_2 = Linear2D(in_features=16384, out_features=1024)
def forward(self, x):
x = self.linear_1(x)
x = self.linear_2(x)
return x
zero = dict(
model_config=dict(
tensor_placement_policy='auto',
shard_strategy=TensorShardStrategy(),
reuse_fp16_shard=True
),
optimizer_config=dict(initial_scale=2**5, gpu_margin_mem_ratio=0.2)
)
```