mirror of https://github.com/hpcaitech/ColossalAI
binmakeswell
3 years ago
committed by
Frank Lee
5 changed files with 253 additions and 18 deletions
@ -0,0 +1,207 @@
|
||||
# Colossal-AI |
||||
|
||||
[![logo](./docs/images/Colossal-AI_logo.png)](https://www.colossalai.org/) |
||||
|
||||
<div align="center"> |
||||
<h3> <a href="https://arxiv.org/abs/2110.14883"> 论文 </a> | |
||||
<a href="https://www.colossalai.org/"> 文档 </a> | |
||||
<a href="https://github.com/hpcaitech/ColossalAI-Examples"> 样例 </a> | |
||||
<a href="https://github.com/hpcaitech/ColossalAI/discussions"> 论坛 </a> | |
||||
<a href="https://medium.com/@hpcaitech"> 博客 </a></h3> |
||||
<br/> |
||||
|
||||
[![Build](https://github.com/hpcaitech/ColossalAI/actions/workflows/PR_CI.yml/badge.svg)](https://github.com/hpcaitech/ColossalAI/actions/workflows/PR_CI.yml) |
||||
[![Documentation](https://readthedocs.org/projects/colossalai/badge/?version=latest)](https://colossalai.readthedocs.io/en/latest/?badge=latest) |
||||
[![codebeat badge](https://codebeat.co/badges/bfe8f98b-5d61-4256-8ad2-ccd34d9cc156)](https://codebeat.co/projects/github-com-hpcaitech-colossalai-main) |
||||
|
||||
| [English](README.md) | [中文](README-zh-Hans.md) | |
||||
</div> |
||||
一个整合高效并行技术的AI大模型训练系统。 |
||||
|
||||
## 特点 |
||||
|
||||
Colossal-AI为您提供了一系列并行训练组件。我们的目标是让您的分布式AI模型训练像普通的单GPU模型一样简单。我们提供的友好工具可以让您在几行代码内快速开始分布式训练。 |
||||
|
||||
- 数据并行 |
||||
- 流水线并行 |
||||
- 1维, 2维, 2.5维, 3维张量并行 |
||||
- 序列并行 |
||||
- 友好的trainer和engine |
||||
- 可扩展新的并行方式 |
||||
- 混合精度 |
||||
- 零冗余优化器 (ZeRO) |
||||
|
||||
## 样例 |
||||
### ViT |
||||
|
||||
<img src="./docs/images/ViT_TP.png" width="400" /> |
||||
|
||||
- 14倍批大小 |
||||
- 5倍训练速度 |
||||
|
||||
### GPT-3 & GPT-2 |
||||
|
||||
![GPT_2_3](./docs/images/GPT_2_3.png) |
||||
|
||||
- GPT-3:释放 50% GPU 资源占用, 或 10.7% 加速 |
||||
- GPT-2:降低11倍GPU显存占用,或超线性扩展 |
||||
|
||||
### BERT |
||||
|
||||
![BERT_seq](./docs/images/BERT_seq.png) |
||||
|
||||
- 2倍训练速度 |
||||
- 1.5倍序列长度 |
||||
|
||||
请访问我们的[文档和教程](https://www.colossalai.org/)以了解详情。 |
||||
|
||||
|
||||
## 安装 |
||||
|
||||
### PyPI |
||||
|
||||
```bash |
||||
pip install colossalai |
||||
``` |
||||
该命令将会安装CUDA extension,如果你已安装CUDA, NVCC和torch。 |
||||
|
||||
如果你不想安装CUDA extension, 可在命令中添加`--global-option="--no_cuda_ext"`, 例如: |
||||
```bash |
||||
pip install colossalai --global-option="--no_cuda_ext" |
||||
``` |
||||
|
||||
如果你想使用`ZeRO`, 你可以使用: |
||||
```bash |
||||
pip install colossalai[zero] |
||||
``` |
||||
|
||||
### 从源代码安装 |
||||
|
||||
> Colossal-AI的版本将与该项目的主分支保持一致。欢迎通过issue反馈你遇到的任何问题 :) |
||||
|
||||
```shell |
||||
git clone https://github.com/hpcaitech/ColossalAI.git |
||||
cd ColossalAI |
||||
# 安装依赖 |
||||
pip install -r requirements/requirements.txt |
||||
|
||||
# 安装 colossalai |
||||
pip install . |
||||
``` |
||||
|
||||
如果你不想安装和使用CUDA kernel fusion (使用fused优化器需安装): |
||||
|
||||
```shell |
||||
pip install --global-option="--no_cuda_ext" . |
||||
``` |
||||
|
||||
## 使用 Docker |
||||
|
||||
运行以下命令从我们提供的docker文件中建立docker镜像。 |
||||
|
||||
```bash |
||||
cd ColossalAI |
||||
docker build -t colossalai ./docker |
||||
``` |
||||
|
||||
运行以下命令从以交互式启动docker镜像. |
||||
|
||||
```bash |
||||
docker run -ti --gpus all --rm --ipc=host colossalai bash |
||||
``` |
||||
|
||||
## 做出贡献 |
||||
|
||||
欢迎为该项目做出贡献,请参阅[贡献指南](./CONTRIBUTING.md)。 |
||||
|
||||
|
||||
## 快速预览 |
||||
|
||||
### Start Distributed Training in Lines |
||||
|
||||
```python |
||||
import colossalai |
||||
from colossalai.utils import get_dataloader |
||||
|
||||
|
||||
# my_config可以是config文件的路径或字典对象 |
||||
# 'localhost' 仅适用于单节点,在多节点时需指明节点名 |
||||
colossalai.launch( |
||||
config=my_config, |
||||
rank=rank, |
||||
world_size=world_size, |
||||
backend='nccl', |
||||
port=29500, |
||||
host='localhost' |
||||
) |
||||
|
||||
# 构建模型 |
||||
model = ... |
||||
|
||||
# 构建数据集, dataloader会默认处理分布式数据sampler |
||||
train_dataset = ... |
||||
train_dataloader = get_dataloader(dataset=dataset, |
||||
shuffle=True |
||||
) |
||||
|
||||
|
||||
# 构建优化器 |
||||
optimizer = ... |
||||
|
||||
# 构建损失函数 |
||||
criterion = ... |
||||
|
||||
# 初始化colossalai |
||||
engine, train_dataloader, _, _ = colossalai.initialize( |
||||
model=model, |
||||
optimizer=optimizer, |
||||
criterion=criterion, |
||||
train_dataloader=train_dataloader |
||||
) |
||||
|
||||
# 开始训练 |
||||
engine.train() |
||||
for epoch in range(NUM_EPOCHS): |
||||
for data, label in train_dataloader: |
||||
engine.zero_grad() |
||||
output = engine(data) |
||||
loss = engine.criterion(output, label) |
||||
engine.backward(loss) |
||||
engine.step() |
||||
|
||||
``` |
||||
|
||||
### 构建一个简单的2维并行模型 |
||||
|
||||
假设我们有一个非常巨大的MLP模型,它巨大的hidden size使得它难以被单个GPU容纳。我们可以将该模型的权重以二维网格的形式分配到多个GPU上,且保持你熟悉的模型构建方式。 |
||||
|
||||
```python |
||||
from colossalai.nn import Linear2D |
||||
import torch.nn as nn |
||||
|
||||
|
||||
class MLP_2D(nn.Module): |
||||
|
||||
def __init__(self): |
||||
super().__init__() |
||||
self.linear_1 = Linear2D(in_features=1024, out_features=16384) |
||||
self.linear_2 = Linear2D(in_features=16384, out_features=1024) |
||||
|
||||
def forward(self, x): |
||||
x = self.linear_1(x) |
||||
x = self.linear_2(x) |
||||
return x |
||||
|
||||
``` |
||||
|
||||
|
||||
## 引用 |
||||
|
||||
``` |
||||
@article{bian2021colossal, |
||||
title={Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training}, |
||||
author={Bian, Zhengda and Liu, Hongxin and Wang, Boxiang and Huang, Haichen and Li, Yongbin and Wang, Chuanrui and Cui, Fan and You, Yang}, |
||||
journal={arXiv preprint arXiv:2110.14883}, |
||||
year={2021} |
||||
} |
||||
``` |
After Width: | Height: | Size: 329 KiB |
After Width: | Height: | Size: 415 KiB |
After Width: | Height: | Size: 338 KiB |
Loading…
Reference in new issue