mirror of https://github.com/hpcaitech/ColossalAI
[NFC] add OPT (#1345)
parent
942c8cd1fb
commit
92b0b139eb
|
@ -35,6 +35,7 @@
|
|||
<li><a href="#GPT-2">GPT-2</a></li>
|
||||
<li><a href="#BERT">BERT</a></li>
|
||||
<li><a href="#PaLM">PaLM</a></li>
|
||||
<li><a href="#OPT">OPT</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li>
|
||||
|
@ -130,7 +131,13 @@ Colossal-AI 为您提供了一系列并行组件。我们的目标是让您的
|
|||
### PaLM
|
||||
- [PaLM-colossalai](https://github.com/hpcaitech/PaLM-colossalai): 可扩展的谷歌 Pathways Language Model ([PaLM](https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html)) 实现。
|
||||
|
||||
请访问我们的[文档和教程](https://www.colossalai.org/)以了解详情。
|
||||
### OPT
|
||||
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/OPT.png" width=800/>
|
||||
|
||||
- [Open Pretrained Transformer (OPT)](https://github.com/facebookresearch/metaseq), 由Meta发布的1750亿语言模型,由于完全公开了预训练参数权重,因此促进了下游任务和应用部署的发展。
|
||||
- 加速40%,仅用几行代码以低成本微调OPT。[[样例]](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/language/opt)
|
||||
|
||||
请访问我们的 [文档](https://www.colossalai.org/) 和 [例程](https://github.com/hpcaitech/ColossalAI-Examples) 以了解详情。
|
||||
|
||||
<p align="right">(<a href="#top">返回顶端</a>)</p>
|
||||
|
||||
|
|
|
@ -35,6 +35,7 @@
|
|||
<li><a href="#GPT-2">GPT-2</a></li>
|
||||
<li><a href="#BERT">BERT</a></li>
|
||||
<li><a href="#PaLM">PaLM</a></li>
|
||||
<li><a href="#OPT">OPT</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li>
|
||||
|
@ -135,7 +136,13 @@ distributed training and inference in a few lines.
|
|||
### PaLM
|
||||
- [PaLM-colossalai](https://github.com/hpcaitech/PaLM-colossalai): Scalable implementation of Google's Pathways Language Model ([PaLM](https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html)).
|
||||
|
||||
Please visit our [documentation and tutorials](https://www.colossalai.org/) for more details.
|
||||
### OPT
|
||||
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/OPT.png" width=800/>
|
||||
|
||||
- [Open Pretrained Transformer (OPT)](https://github.com/facebookresearch/metaseq), a 175-Billion parameter AI language model released by Meta, which stimulates AI programmers to perform various downstream tasks and application deployments because public pretrained model weights.
|
||||
- 40% speedup fine-tuning OPT at low cost in lines. [[Example]](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/language/opt)
|
||||
|
||||
Please visit our [documentation](https://www.colossalai.org/) and [examples](https://github.com/hpcaitech/ColossalAI-Examples) for more details.
|
||||
|
||||
<p align="right">(<a href="#top">back to top</a>)</p>
|
||||
|
||||
|
|
Loading…
Reference in New Issue