ColossalAI/colossalai/nn/optimizer/fused_sgd.py

155 lines
5.9 KiB
Python
Raw Normal View History

2021-10-28 16:21:23 +00:00
# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_sgd.py
import torch
from torch.optim.optimizer import Optimizer, required
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
from colossalai.utils import multi_tensor_applier
2021-10-28 16:21:23 +00:00
class FusedSGD(Optimizer):
r"""Implements stochastic gradient descent (optionally with momentum).
`FusedSGD` requires CUDA extensions which can be built during installation or runtime.
2021-10-28 16:21:23 +00:00
This version of fused SGD implements 2 fusions.
* Fusion of the SGD update's elementwise operations
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.
:class:`colossalai.nn.optimizer.FusedSGD` may be used as a drop-in replacement for ``torch.optim.SGD``
:class:`colossalai.nn.optimizer.FusedSGD` may be used with or without Amp.
2021-10-28 16:21:23 +00:00
Nesterov momentum is based on the formula from
`On the importance of initialization and momentum in deep learning`__.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float): learning rate
momentum (float, optional): momentum factor (default: 0)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
dampening (float, optional): dampening for momentum (default: 0)
nesterov (bool, optional): enables Nesterov momentum (default: False)
__ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
.. note::
The implementation of SGD with Momentum/Nesterov subtly differs from
Sutskever et. al. and implementations in some other frameworks.
Considering the specific case of Momentum, the update can be written as
.. math::
v = \rho * v + g \\
p = p - lr * v
where p, g, v and :math:`\rho` denote the parameters, gradient,
velocity, and momentum respectively.
This is in contrast to Sutskever et. al. and
other frameworks which employ an update of the form
.. math::
v = \rho * v + lr * g \\
p = p - v
The Nesterov version is analogously modified.
"""
def __init__(
self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, wd_after_momentum=False
):
2021-10-28 16:21:23 +00:00
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
2022-04-01 08:27:03 +00:00
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
2021-10-28 16:21:23 +00:00
2022-04-01 08:27:03 +00:00
defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov)
2021-10-28 16:21:23 +00:00
if nesterov and (momentum <= 0 or dampening != 0):
2022-04-01 08:27:03 +00:00
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
2021-10-28 16:21:23 +00:00
super(FusedSGD, self).__init__(params, defaults)
self.wd_after_momentum = wd_after_momentum
if multi_tensor_applier.available:
from colossalai.kernel.kernel_loader import FusedOptimizerLoader
fused_optim = FusedOptimizerLoader().load()
2021-10-28 16:21:23 +00:00
# Skip buffer
self._dummy_overflow_buf = torch.tensor(
[0], dtype=torch.int, device=self.param_groups[0]["params"][0].device
)
self.multi_tensor_sgd = fused_optim.multi_tensor_sgd
2021-10-28 16:21:23 +00:00
else:
raise RuntimeError("FusedSGD requires cuda extensions")
2021-10-28 16:21:23 +00:00
def __setstate__(self, state):
super(FusedSGD, self).__setstate__(state)
for group in self.param_groups:
group.setdefault("nesterov", False)
2021-10-28 16:21:23 +00:00
def get_momentums(self, params):
momentums = []
first_run = True
for p in params:
param_state = self.state[p]
# torch.optim.SGD initializes momentum in the main loop, we have
# to do it here, and track whether or not we've done so, so that
# momentum application can be skipped in the main kernel.
if "momentum_buffer" not in param_state:
2021-10-28 16:21:23 +00:00
first_run = True
buf = param_state["momentum_buffer"] = torch.zeros_like(p)
2021-10-28 16:21:23 +00:00
momentums.append(buf)
else:
first_run = False
momentums.append(param_state["momentum_buffer"])
2021-10-28 16:21:23 +00:00
return momentums, first_run
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
2022-06-20 03:19:38 +00:00
for group in self.param_groups:
weight_decay = group["weight_decay"]
momentum = group["momentum"]
dampening = group["dampening"]
nesterov = group["nesterov"]
2021-10-28 16:21:23 +00:00
# For each group, there are 3 possible combinations we need to consider:
2022-06-20 03:19:38 +00:00
# grad_type, param_to_update_type, momentum_type
# 1. fp16, fp16, fp16
# 2. fp32, fp32, fp32
# 3. fp16, fp32, fp32
g_l, p_l = [], []
for p in group["params"]:
2022-06-20 03:19:38 +00:00
if p.grad is None:
continue
if p.grad.data.is_sparse:
raise RuntimeError("FusedSGD does not support sparse gradients")
2022-06-20 03:19:38 +00:00
g_l.append(p.grad)
p_l.append(p)
m_l, first_run = self.get_momentums(p_l)
multi_tensor_applier(
self.multi_tensor_sgd,
self._dummy_overflow_buf,
[g_l, p_l, m_l],
weight_decay,
momentum,
dampening,
group["lr"],
nesterov,
first_run,
self.wd_after_momentum,
1.0,
)
2021-10-28 16:21:23 +00:00
return loss