polish optimizer docstring (#619)

pull/621/head^2
ver217 2022-04-01 16:27:03 +08:00 committed by GitHub
parent 8432dc7080
commit e619a651fb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 65 additions and 82 deletions

View File

@ -44,8 +44,8 @@ class CPUAdam(torch.optim.Optimizer):
True for decoupled weight decay(also known as AdamW) (default: True)
simd_log (boolean, optional): whether to show if you are using SIMD to
accelerate. (default: False)
.. _Adam: A Method for Stochastic Optimization:
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ

View File

@ -41,7 +41,7 @@ class FusedAdam(torch.optim.Optimizer):
set_grad_none (bool, optional): whether set grad to None when zero_grad()
method is called. (default: True)
.. _Adam: A Method for Stochastic Optimization:
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
@ -128,14 +128,14 @@ class FusedAdam(torch.optim.Optimizer):
if p.dtype not in [torch.float16, torch.float32]:
raise RuntimeError('FusedAdam only support fp16 and fp32.')
g_l.append(p.grad.data)
p_l.append(p.data)
m_l.append(state['exp_avg'])
v_l.append(state['exp_avg_sq'])
multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_l, p_l, m_l, v_l],
group['lr'], beta1, beta2, group['eps'], group['step'], self.adamw_mode,
bias_correction, group['weight_decay'])
multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_l, p_l, m_l, v_l], group['lr'],
beta1, beta2, group['eps'], group['step'], self.adamw_mode, bias_correction,
group['weight_decay'])
return loss

View File

@ -10,7 +10,7 @@ class FusedLAMB(torch.optim.Optimizer):
"""Implements LAMB algorithm.
Currently GPU-only. Requires ColossalAI to be installed via
``pip install -v --no-cache-dir --global-option="--cuda_ext" ./``.
``pip install .``.
This version of fused LAMB implements 2 fusions.

View File

@ -11,7 +11,7 @@ class FusedSGD(Optimizer):
r"""Implements stochastic gradient descent (optionally with momentum).
Currently GPU-only. Requires ColossalAI to be installed via
``pip install -v --no-cache-dir --global-option="--cuda_ext" ./``.
``pip install .``.
This version of fused SGD implements 2 fusions.
@ -57,8 +57,13 @@ class FusedSGD(Optimizer):
The Nesterov version is analogously modified.
"""
def __init__(self, params, lr=required, momentum=0, dampening=0,
weight_decay=0, nesterov=False,
def __init__(self,
params,
lr=required,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
wd_after_momentum=False,
materialize_master_grads=True,
set_grad_none=False):
@ -67,14 +72,11 @@ class FusedSGD(Optimizer):
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError(
"Invalid weight_decay value: {}".format(weight_decay))
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=nesterov)
defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError(
"Nesterov momentum requires a momentum and zero dampening")
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(FusedSGD, self).__init__(params, defaults)
self.wd_after_momentum = wd_after_momentum
@ -86,8 +88,9 @@ class FusedSGD(Optimizer):
if multi_tensor_applier.available:
import colossal_C
# Skip buffer
self._dummy_overflow_buf = torch.tensor(
[0], dtype=torch.int, device=self.param_groups[0]["params"][0].device)
self._dummy_overflow_buf = torch.tensor([0],
dtype=torch.int,
device=self.param_groups[0]["params"][0].device)
self.multi_tensor_sgd = colossal_C.multi_tensor_sgd
else:
raise RuntimeError('FusedSGD requires cuda extensions')
@ -133,8 +136,7 @@ class FusedSGD(Optimizer):
if closure is not None:
loss = closure()
explicit_master_params = (hasattr(self, "_amp_stash") and
hasattr(self._amp_stash, "fp32_from_fp16_groups"))
explicit_master_params = (hasattr(self, "_amp_stash") and hasattr(self._amp_stash, "fp32_from_fp16_groups"))
for gid, group in enumerate(self.param_groups):
weight_decay = group['weight_decay']
@ -154,71 +156,52 @@ class FusedSGD(Optimizer):
if explicit_master_params:
stash = self._amp_stash
fp32_params = [
p for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None]
fp32_grads = [
p.grad for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None]
fp32_params = [p for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None]
fp32_grads = [p.grad for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None]
fp32_momentums, first_runs[1] = self.get_momentums(fp32_params)
if self.materialize_master_grads:
fp16_model_params = [p for i, p in enumerate(
stash.fp16_groups[gid]) if stash.fp32_from_fp16_groups[gid][i].grad is not None]
fp32_from_fp16_grads = [
p.grad for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None]
fp32_from_fp16_params = [
p for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None]
fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(
fp32_from_fp16_params)
fp16_set = [fp32_from_fp16_grads, fp32_from_fp16_params,
fp32_from_fp16_momentums, fp16_model_params]
else:
fp16_model_params = [
p for p in stash.fp16_groups[gid] if p.grad is not None]
fp16_model_grads = [
p.grad for p in stash.fp16_groups[gid] if p.grad is not None]
fp32_from_fp16_params = [p for i, p in enumerate(
stash.fp32_from_fp16_groups[gid]) if stash.fp16_groups[gid][i].grad is not None]
fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(
fp32_from_fp16_params)
p for i, p in enumerate(stash.fp16_groups[gid])
if stash.fp32_from_fp16_groups[gid][i].grad is not None
]
fp32_from_fp16_grads = [p.grad for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None]
fp32_from_fp16_params = [p for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None]
fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(fp32_from_fp16_params)
fp16_set = [fp16_model_grads, fp32_from_fp16_params,
fp32_from_fp16_momentums, fp16_model_params]
fp16_set = [
fp32_from_fp16_grads, fp32_from_fp16_params, fp32_from_fp16_momentums, fp16_model_params
]
else:
fp16_model_params = [p for p in stash.fp16_groups[gid] if p.grad is not None]
fp16_model_grads = [p.grad for p in stash.fp16_groups[gid] if p.grad is not None]
fp32_from_fp16_params = [
p for i, p in enumerate(stash.fp32_from_fp16_groups[gid])
if stash.fp16_groups[gid][i].grad is not None
]
fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(fp32_from_fp16_params)
launch_sets = [fp16_set, [
fp32_grads, fp32_params, fp32_momentums]]
fp16_set = [fp16_model_grads, fp32_from_fp16_params, fp32_from_fp16_momentums, fp16_model_params]
launch_sets = [fp16_set, [fp32_grads, fp32_params, fp32_momentums]]
else:
fp16_params = [p for p in group['params'] if (
p.dtype == torch.float16 and p.grad is not None)]
fp16_grads = [p.grad for p in group['params'] if (
p.dtype == torch.float16 and p.grad is not None)]
fp16_params = [p for p in group['params'] if (p.dtype == torch.float16 and p.grad is not None)]
fp16_grads = [p.grad for p in group['params'] if (p.dtype == torch.float16 and p.grad is not None)]
fp16_momentums, first_runs[0] = self.get_momentums(fp16_params)
fp32_params = [p for p in group['params'] if (
p.dtype == torch.float32 and p.grad is not None)]
fp32_grads = [p.grad for p in group['params'] if (
p.dtype == torch.float32 and p.grad is not None)]
fp32_params = [p for p in group['params'] if (p.dtype == torch.float32 and p.grad is not None)]
fp32_grads = [p.grad for p in group['params'] if (p.dtype == torch.float32 and p.grad is not None)]
fp32_momentums, first_runs[1] = self.get_momentums(fp32_params)
launch_sets = [[fp16_grads, fp16_params, fp16_momentums],
[fp32_grads, fp32_params, fp32_momentums]]
launch_sets = [[fp16_grads, fp16_params, fp16_momentums], [fp32_grads, fp32_params, fp32_momentums]]
for s, (launch_set, first_run) in enumerate(zip(launch_sets, first_runs)):
assert len(launch_set[0]) == len(launch_set[1])
assert len(launch_set[0]) == len(launch_set[2])
if len(launch_set[0]) > 0:
multi_tensor_applier(
self.multi_tensor_sgd,
self._dummy_overflow_buf,
launch_set,
weight_decay,
momentum,
dampening,
group['lr'],
nesterov,
first_run,
self.wd_after_momentum,
1.0 / self.most_recent_scale)
multi_tensor_applier(self.multi_tensor_sgd, self._dummy_overflow_buf, launch_set, weight_decay,
momentum, dampening, group['lr'], nesterov, first_run, self.wd_after_momentum,
1.0 / self.most_recent_scale)
self.most_recent_scale = 1.0
self.scale_set_by_backward = False

View File

@ -1,6 +1,5 @@
import torch
from colossalai.utils import multi_tensor_applier
from colossalai.registry import OPTIMIZERS
@ -14,13 +13,14 @@ class HybridAdam(torch.optim.Optimizer):
* Parameters on CPU and gradients on CPU is allowed.
* Parameters on GPU and gradients on GPU is allowed.
* Parameters on GPU and gradients on CPU is **not** allowed.
Requires ColossalAI to be installed via ``pip install .``
This version of Hybrid Adam is an hybrid of CPUAdam and FusedAdam.
* For parameters updating on CPU, it uses CPUAdam.
* For parameters updating on GPU, it uses FusedAdam.
* Hybird precision calculation of fp16 and fp32 is supported, eg fp32 parameters and fp16 gradients.
* For parameters updating on CPU, it uses CPUAdam.
* For parameters updating on GPU, it uses FusedAdam.
* Hybird precision calculation of fp16 and fp32 is supported, eg fp32 parameters and fp16 gradients.
:class:`colossalai.nn.optimizer.HybridAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
or ``torch.optim.Adam`` with ``adamw_mode=False``
@ -43,8 +43,8 @@ class HybridAdam(torch.optim.Optimizer):
True for decoupled weight decay(also known as AdamW) (default: True)
simd_log (boolean, optional): whether to show if you are using SIMD to
accelerate. (default: False)
.. _Adam: A Method for Stochastic Optimization:
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
@ -75,7 +75,7 @@ class HybridAdam(torch.optim.Optimizer):
import colossal_C
except ImportError:
raise ImportError('Please install colossalai from source code to use HybridAdam')
self.cpu_adam_op = cpu_adam
self.cpu_adam_op.create_adam(self.opt_id, lr, betas[0], betas[1], eps, weight_decay, adamw_mode, simd_log)
@ -131,14 +131,14 @@ class HybridAdam(torch.optim.Optimizer):
g_l.append(p.grad.data)
p_l.append(p.data)
m_l.append(state['exp_avg'])
v_l.append(state['exp_avg_sq'])
v_l.append(state['exp_avg_sq'])
else:
raise RuntimeError
if len(g_l) > 0:
adamw_mode = 1 if self.adamw_mode else 0
bias_correction = 1 if group['bias_correction'] else 0
multi_tensor_applier(self.gpu_adam_op, self._dummy_overflow_buf, [g_l, p_l,m_l, v_l],
group['lr'], group['betas'][0], group['betas'][1], group['eps'], group_step,
adamw_mode, bias_correction, group['weight_decay'])
multi_tensor_applier(self.gpu_adam_op, self._dummy_overflow_buf, [g_l, p_l, m_l, v_l], group['lr'],
group['betas'][0], group['betas'][1], group['eps'], group_step, adamw_mode,
bias_correction, group['weight_decay'])
return loss