|
|
|
@ -28,10 +28,10 @@
|
|
|
|
|
* first run : necessary for proper momentum handling & init |
|
|
|
|
* wd_after_momentum : apply weight decay _after_ momentum instead of before |
|
|
|
|
**/ |
|
|
|
|
template <int N, typename T_grad, typename T_weight> |
|
|
|
|
template <typename T_grad, typename T_weight> |
|
|
|
|
struct SGDFunctor { |
|
|
|
|
__device__ __forceinline__ void operator()( |
|
|
|
|
int chunk_size, volatile int *noop_gmem, TensorListMetadata<N> &tl, |
|
|
|
|
int chunk_size, volatile int *noop_gmem, TensorListMetadata<3> &tl, |
|
|
|
|
float wd, float momentum, float dampening, float lr, bool nesterov, |
|
|
|
|
bool first_run, bool wd_after_momentum, float scale) { |
|
|
|
|
// Early exit if we don't need to do anything |
|
|
|
@ -50,12 +50,6 @@ struct SGDFunctor {
|
|
|
|
|
T_weight *mom_in = (T_weight *)tl.addresses[2][tensor_loc]; |
|
|
|
|
mom_in += chunk_idx * chunk_size; |
|
|
|
|
|
|
|
|
|
at::Half *model_weights_out = nullptr; |
|
|
|
|
if (N == 4) { |
|
|
|
|
model_weights_out = (at::Half *)tl.addresses[3][tensor_loc]; |
|
|
|
|
model_weights_out += chunk_idx * chunk_size; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
n -= chunk_idx * chunk_size; |
|
|
|
|
|
|
|
|
|
// Non-divergent exit condition for the __syncthreads |
|
|
|
@ -110,10 +104,6 @@ struct SGDFunctor {
|
|
|
|
|
// adjust the weight and write out |
|
|
|
|
weight_in[i] += (-lr * incoming_grads[ii]); |
|
|
|
|
|
|
|
|
|
// if necessary, write out an fp16 copy of the weights |
|
|
|
|
if (N == 4) |
|
|
|
|
model_weights_out[i] = static_cast<at::Half>(weight_in[i]); |
|
|
|
|
|
|
|
|
|
// also write out the new momentum |
|
|
|
|
if (momentum != 0.f) mom_in[i] = incoming_moms[ii]; |
|
|
|
|
} |
|
|
|
@ -131,20 +121,14 @@ void multi_tensor_sgd_cuda(int chunk_size, at::Tensor noop_flag,
|
|
|
|
|
auto grad_type = tensor_lists[0][0].scalar_type(); |
|
|
|
|
auto weight_type = tensor_lists[1][0].scalar_type(); |
|
|
|
|
|
|
|
|
|
if (num_tensors == 4) |
|
|
|
|
for (int i = 0; i < tensor_lists[3].size(); i++) |
|
|
|
|
TORCH_CHECK(tensor_lists[3][i].scalar_type() == at::ScalarType::Half, |
|
|
|
|
"Additional output tensors should always be fp16."); |
|
|
|
|
|
|
|
|
|
TORCH_CHECK(noop_flag.device() == tensor_lists[0][0].device(), |
|
|
|
|
"expected noop flag to be on the same device as tensors"); |
|
|
|
|
|
|
|
|
|
// We have 3 possibilities to handle here, in terms of |
|
|
|
|
// grad_type, param_type, momentum_type, requires_fp16_copy |
|
|
|
|
// 1. fp16, fp16, fp16, No |
|
|
|
|
// 2. fp32, fp32, fp32, No |
|
|
|
|
// 3. fp16, fp32, fp32, Yes |
|
|
|
|
// 4. fp32, fp32, fp32, Yes // this is the materialize_master_grads=True case |
|
|
|
|
// grad_type, param_type, momentum_type |
|
|
|
|
// 1. fp16, fp16, fp16 |
|
|
|
|
// 2. fp32, fp32, fp32 |
|
|
|
|
// 3. fp16, fp32, fp32 |
|
|
|
|
// It's easier to hardcode these possibilities than to use |
|
|
|
|
// switches etc. to handle the cross-product of cases where |
|
|
|
|
// we don't want the majority of them. |
|
|
|
@ -153,49 +137,22 @@ void multi_tensor_sgd_cuda(int chunk_size, at::Tensor noop_flag,
|
|
|
|
|
if (grad_type == at::ScalarType::Half && |
|
|
|
|
weight_type == at::ScalarType::Half && num_tensors == 3) { |
|
|
|
|
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, |
|
|
|
|
SGDFunctor<3, at::Half, at::Half>(), wd, momentum, |
|
|
|
|
SGDFunctor<at::Half, at::Half>(), wd, momentum, |
|
|
|
|
dampening, lr, nesterov, first_run, wd_after_momentum, |
|
|
|
|
scale); |
|
|
|
|
} |
|
|
|
|
// Case 2. fp16, fp32, fp32, No |
|
|
|
|
// else if (grad_type == at::ScalarType::Half && |
|
|
|
|
// weight_type == at::ScalarType::Float && |
|
|
|
|
// num_tensors == 3) { |
|
|
|
|
// multi_tensor_apply<3>( |
|
|
|
|
// BLOCK_SIZE, |
|
|
|
|
// chunk_size, |
|
|
|
|
// noop_flag, |
|
|
|
|
// tensor_lists, |
|
|
|
|
// SGDFunctor<3, at::Half, float>(), |
|
|
|
|
// wd, |
|
|
|
|
// momentum, |
|
|
|
|
// dampening, |
|
|
|
|
// lr, |
|
|
|
|
// nesterov, |
|
|
|
|
// first_run, |
|
|
|
|
// wd_after_momentum); |
|
|
|
|
// } |
|
|
|
|
// Case 2. fp32, fp32, fp32, No |
|
|
|
|
// Case 2. fp32, fp32, fp32 |
|
|
|
|
else if (grad_type == at::ScalarType::Float && |
|
|
|
|
weight_type == at::ScalarType::Float && num_tensors == 3) { |
|
|
|
|
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, |
|
|
|
|
SGDFunctor<3, float, float>(), wd, momentum, |
|
|
|
|
dampening, lr, nesterov, first_run, wd_after_momentum, |
|
|
|
|
scale); |
|
|
|
|
SGDFunctor<float, float>(), wd, momentum, dampening, |
|
|
|
|
lr, nesterov, first_run, wd_after_momentum, scale); |
|
|
|
|
} |
|
|
|
|
// Case 3. fp16, fp32, fp32, Yes |
|
|
|
|
// Case 3. fp16, fp32, fp32 |
|
|
|
|
else if (grad_type == at::ScalarType::Half && |
|
|
|
|
weight_type == at::ScalarType::Float && num_tensors == 4) { |
|
|
|
|
multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, |
|
|
|
|
SGDFunctor<4, at::Half, float>(), wd, momentum, |
|
|
|
|
dampening, lr, nesterov, first_run, wd_after_momentum, |
|
|
|
|
scale); |
|
|
|
|
} |
|
|
|
|
// Case 4. fp32, fp32, fp32, Yes |
|
|
|
|
else if (grad_type == at::ScalarType::Float && |
|
|
|
|
weight_type == at::ScalarType::Float && num_tensors == 4) { |
|
|
|
|
multi_tensor_apply<4>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, |
|
|
|
|
SGDFunctor<4, float, float>(), wd, momentum, |
|
|
|
|
weight_type == at::ScalarType::Float && num_tensors == 3) { |
|
|
|
|
multi_tensor_apply<3>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists, |
|
|
|
|
SGDFunctor<at::Half, float>(), wd, momentum, |
|
|
|
|
dampening, lr, nesterov, first_run, wd_after_momentum, |
|
|
|
|
scale); |
|
|
|
|
} else { |
|
|
|
|