Browse Source

[builder] use runtime builder for fused_optim (#2189)

pull/2190/head
Jiarui Fang 2 years ago committed by GitHub
parent
commit
9587b080ba
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 9
      colossalai/nn/optimizer/fused_adam.py
  2. 11
      colossalai/nn/optimizer/fused_lamb.py
  3. 9
      colossalai/nn/optimizer/fused_sgd.py
  4. 14
      colossalai/utils/common.py
  5. 7
      tests/test_optimizer/test_fused_adam_kernel.py

9
colossalai/nn/optimizer/fused_adam.py

@ -65,11 +65,14 @@ class FusedAdam(torch.optim.Optimizer):
self.adamw_mode = 1 if adamw_mode else 0
self.set_grad_none = set_grad_none
if multi_tensor_applier.available:
import colossalai._C.fused_optim
try:
from colossalai._C import fused_optim
except:
from colossalai.kernel.op_builder.fused_optim import FusedOptimBuilder
fused_optim = FusedOptimBuilder().load()
# Skip buffer
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
self.multi_tensor_adam = colossalai._C.fused_optim.multi_tensor_adam
self.multi_tensor_adam = fused_optim.multi_tensor_adam
else:
raise RuntimeError('FusedAdam requires cuda extensions')

11
colossalai/nn/optimizer/fused_lamb.py

@ -76,13 +76,18 @@ class FusedLAMB(torch.optim.Optimizer):
max_grad_norm=max_grad_norm)
super(FusedLAMB, self).__init__(params, defaults)
if multi_tensor_applier.available:
import colossalai._C.fused_optim
self.multi_tensor_l2norm = colossalai._C.fused_optim.multi_tensor_l2norm
try:
from colossalai._C import fused_optim
except:
from colossalai.kernel.op_builder.fused_optim import FusedOptimBuilder
fused_optim = FusedOptimBuilder().load()
self.multi_tensor_l2norm = fused_optim.multi_tensor_l2norm
# Skip buffer
self._dummy_overflow_buf = torch.tensor([0],
dtype=torch.int,
device=self.param_groups[0]["params"][0].device)
self.multi_tensor_lamb = colossalai._C.fused_optim.multi_tensor_lamb
self.multi_tensor_lamb = fused_optim.multi_tensor_lamb
else:
raise RuntimeError('FusedLAMB requires cuda extensions')

9
colossalai/nn/optimizer/fused_sgd.py

@ -80,13 +80,16 @@ class FusedSGD(Optimizer):
self.wd_after_momentum = wd_after_momentum
if multi_tensor_applier.available:
import colossalai._C.fused_optim
try:
from colossalai._C import fused_optim
except:
from colossalai.kernel.op_builder import FusedOptimBuilder
fused_optim = FusedOptimBuilder().load()
# Skip buffer
self._dummy_overflow_buf = torch.tensor([0],
dtype=torch.int,
device=self.param_groups[0]["params"][0].device)
self.multi_tensor_sgd = colossalai._C.fused_optim.multi_tensor_sgd
self.multi_tensor_sgd = fused_optim.multi_tensor_sgd
else:
raise RuntimeError('FusedSGD requires cuda extensions')

14
colossalai/utils/common.py

@ -12,9 +12,10 @@ from torch._six import inf
from torch.nn.parameter import Parameter
try:
import colossalai._C.fused_optim
from colossalai._C import fused_optim
except:
pass
from colossalai.kernel.op_builder import FusedOptimBuilder
fused_optim = FusedOptimBuilder().load()
from collections import defaultdict
from contextlib import contextmanager
@ -133,7 +134,7 @@ def _calc_l2_norm(grads):
if len(grads) > 0:
dummy_overflow_buf = torch.cuda.IntTensor([0])
norm, _ = multi_tensor_applier(
colossalai._C.fused_optim.multi_tensor_l2norm,
fused_optim.multi_tensor_l2norm,
dummy_overflow_buf,
[grads],
False # no per-parameter norm
@ -270,8 +271,8 @@ def _clip_grad_norm(parameters, max_norm: float, total_norm: float) -> None:
cpu_grads.append(p.grad.detach())
if len(cuda_grads) > 0:
dummy_overflow_buf = torch.cuda.IntTensor([0])
multi_tensor_applier(colossalai._C.fused_optim.multi_tensor_scale, dummy_overflow_buf,
[cuda_grads, cuda_grads], clip_coef)
multi_tensor_applier(fused_optim.multi_tensor_scale, dummy_overflow_buf, [cuda_grads, cuda_grads],
clip_coef)
for g in cpu_grads:
g.mul_(clip_coef)
@ -397,8 +398,7 @@ def clip_grad_norm_fp32(parameters, max_norm, norm_type=2):
if enable_cuda_kernels:
grads = [p.grad.detach() for p in params]
dummy_overflow_buf = torch.cuda.IntTensor([0])
multi_tensor_applier(colossalai._C.fused_optim.multi_tensor_scale, dummy_overflow_buf, [grads, grads],
clip_coeff)
multi_tensor_applier(fused_optim.multi_tensor_scale, dummy_overflow_buf, [grads, grads], clip_coeff)
else:
for p in params:
p.grad.detach().mul_(clip_coeff)

7
tests/test_optimizer/test_fused_adam_kernel.py

@ -49,9 +49,12 @@ def test_adam(adamw, step, p_dtype, g_dtype):
try:
import colossalai._C.fused_optim
fused_adam = colossalai._C.fused_optim.multi_tensor_adam
dummy_overflow_buf = torch.cuda.IntTensor([0])
except:
raise ImportError("No colossalai._C.fused_optim kernel installed.")
from colossalai.kernel.op_builder import FusedOptimBuilder
fused_optim = FusedOptimBuilder().load()
fused_adam = fused_optim.multi_tensor_adam
dummy_overflow_buf = torch.cuda.IntTensor([0])
count = 0

Loading…
Cancel
Save