ColossalAI/tests/test_zero_data_parallel/test_shard_param.py

129 lines
4.9 KiB
Python
Raw Normal View History

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from copy import deepcopy
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.utils import free_port
2022-03-14 07:06:02 +00:00
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
from colossalai.zero.sharded_param import ShardedParam, ShardedTensor
from colossalai.zero.sharded_param.sharded_param import ShardedParamV2
from tests.components_to_test.registry import non_distributed_component_funcs
2022-03-14 07:06:02 +00:00
from tests.test_zero_data_parallel.common import CONFIG, allclose
2022-03-14 07:06:02 +00:00
def _run_shard_tensor(rank, world_size, port, shard_strategy):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
t = ShardedTensor(tensor=torch.randn(world_size * 2, 3))
assert list(t.origin_shape) == [world_size * 2, 3]
assert list(t.shape) == [world_size * 2, 3]
2022-03-14 07:06:02 +00:00
shard_strategy = shard_strategy(process_group=None)
# test shard strategy
shard_strategy.shard([t])
assert list(t.shape) == [6], f"{list(t.shape)} vs 6"
shard_strategy.gather([t])
assert list(t.shape) == [world_size * 2, 3], f"{list(t.shape)} vs {[world_size * 2, 3]}"
@pytest.mark.dist
2022-03-08 04:03:35 +00:00
@pytest.mark.parametrize("world_size", [1, 2])
2022-03-14 07:06:02 +00:00
@pytest.mark.parametrize("shard_strategy", [TensorShardStrategy, BucketTensorShardStrategy])
def test_shard_tensor(world_size, shard_strategy):
run_func = partial(_run_shard_tensor, world_size=world_size, port=free_port(), shard_strategy=shard_strategy)
mp.spawn(run_func, nprocs=world_size)
def _run_shard_param_v2(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
param = torch.nn.Parameter(torch.randn(2, 3))
param_ref = deepcopy(param)
sparam = ShardedParamV2(param=param, process_group=None)
allclose(sparam.data.payload, param_ref.data)
sparam.remove_torch_payload()
assert (param.data.numel() == 1)
@pytest.mark.dist
2022-03-08 04:03:35 +00:00
@pytest.mark.parametrize("world_size", [1, 2])
def test_shard_param_v2(world_size):
run_func = partial(_run_shard_param_v2, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
def _run_test_shard_param(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
param = torch.nn.Parameter(torch.randn(2, 3))
param_ref = deepcopy(param)
sparam = ShardedParamV2(param=param, process_group=None)
print(sparam.data)
print(param_ref.data)
logger = get_dist_logger()
for get_components_func in non_distributed_component_funcs:
model_builder, *_ = get_components_func()
model = model_builder(checkpoint=True)
# add an attribute as col_attr to hijack the access to param.data
for _, param in model.named_parameters():
numel_ref = (param.numel() + world_size - 1) // world_size
param.col_attr = ShardedParam(param)
param.col_attr.shard()
param_data = param.col_attr.payload(torch.device('cpu'))
assert (numel_ref == param_data.numel())
for _, param in model.named_parameters():
param.col_attr.gather()
param_data = param.col_attr.payload(torch.device('cpu'))
disable_existing_loggers([logger])
@pytest.mark.dist
2022-03-08 04:03:35 +00:00
@pytest.mark.parametrize("world_size", [1, 2])
def test_shard_param(world_size):
run_func = partial(_run_test_shard_param, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
2022-03-08 04:03:35 +00:00
def _run_init_shard_param(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
2022-03-08 04:03:35 +00:00
param = torch.nn.Parameter(data=torch.rand(world_size, 3))
sparam = ShardedParam(param, None, True)
payload = sparam.payload(torch.device('cuda'))
assert (list(payload.shape) == [3])
del sparam
2022-03-08 04:03:35 +00:00
param_shape = (world_size, 3)
sparam = ShardedParam(param_shape, process_group=None, is_sharded=True, device=torch.device('cpu'))
payload = sparam.payload(torch.device('cuda'))
assert (list(payload.shape) == [3])
2022-03-08 04:03:35 +00:00
param_shape = (world_size, 3)
sparam = ShardedParam(param_shape, process_group=None, is_sharded=False, device=torch.device('cpu'))
payload = sparam.payload(torch.device('cuda'))
2022-03-08 04:03:35 +00:00
assert (list(payload.shape) == [world_size, 3])
@pytest.mark.dist
2022-03-08 04:03:35 +00:00
@pytest.mark.parametrize("world_size", [1, 4])
def test_init_shard_param(world_size):
run_func = partial(_run_init_shard_param, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
2022-03-14 07:06:02 +00:00
test_shard_tensor(2, TensorShardStrategy)
2022-03-08 04:03:35 +00:00
test_shard_param(2)
test_shard_param_v2(2)
test_init_shard_param(4)