2022-03-01 10:17:01 +00:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
|
2022-03-04 07:49:23 +00:00
|
|
|
from copy import deepcopy
|
2022-03-01 10:17:01 +00:00
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.multiprocessing as mp
|
2022-03-08 04:03:35 +00:00
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.zero.sharded_param.sharded_param import ShardedParamV2
|
2022-03-04 03:59:35 +00:00
|
|
|
from colossalai.zero.shard_utils import TensorShardStrategy
|
2022-03-04 02:46:13 +00:00
|
|
|
from colossalai.zero.sharded_param import ShardedTensor, ShardedParam
|
2022-03-01 10:17:01 +00:00
|
|
|
from colossalai.utils import free_port
|
|
|
|
from colossalai.logging import get_dist_logger, disable_existing_loggers
|
2022-03-08 04:03:35 +00:00
|
|
|
|
2022-03-04 07:49:23 +00:00
|
|
|
from tests.test_zero_data_parallel.common import Net, CONFIG, allclose
|
2022-03-01 10:17:01 +00:00
|
|
|
|
2022-03-03 04:42:57 +00:00
|
|
|
|
2022-03-08 04:03:35 +00:00
|
|
|
def _run_shard_tensor(rank, world_size, port):
|
2022-03-04 02:46:13 +00:00
|
|
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
t = ShardedTensor(tensor=torch.randn(world_size * 2, 3))
|
2022-03-04 07:35:07 +00:00
|
|
|
assert list(t.origin_shape) == [world_size * 2, 3]
|
2022-03-04 02:46:13 +00:00
|
|
|
assert list(t.shape) == [world_size * 2, 3]
|
2022-03-04 07:35:07 +00:00
|
|
|
|
2022-03-04 03:59:35 +00:00
|
|
|
shard_strategy = TensorShardStrategy(process_group=None)
|
2022-03-04 02:46:13 +00:00
|
|
|
|
2022-03-04 03:59:35 +00:00
|
|
|
# test shard strategy
|
|
|
|
shard_strategy.shard([t])
|
2022-03-04 07:35:07 +00:00
|
|
|
assert list(t.shape) == [6], f"{list(t.shape)} vs 6"
|
2022-03-04 03:59:35 +00:00
|
|
|
shard_strategy.gather([t])
|
2022-03-04 07:35:07 +00:00
|
|
|
assert list(t.shape) == [world_size * 2, 3], f"{list(t.shape)} vs {[world_size * 2, 3]}"
|
2022-03-04 02:46:13 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
2022-03-08 04:03:35 +00:00
|
|
|
@pytest.mark.parametrize("world_size", [1, 2])
|
|
|
|
def test_shard_tensor(world_size):
|
|
|
|
run_func = partial(_run_shard_tensor, world_size=world_size, port=free_port())
|
2022-03-04 02:46:13 +00:00
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
|
|
|
2022-03-04 07:49:23 +00:00
|
|
|
def _run_shard_param_v2(rank, world_size, port):
|
2022-03-03 04:42:57 +00:00
|
|
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
|
2022-03-04 07:49:23 +00:00
|
|
|
param = torch.nn.Parameter(torch.randn(2, 3))
|
|
|
|
param_ref = deepcopy(param)
|
|
|
|
sparam = ShardedParamV2(param=param, process_group=None)
|
|
|
|
|
|
|
|
allclose(sparam.data, param_ref.data)
|
2022-03-08 06:45:01 +00:00
|
|
|
|
|
|
|
sparam.remove_torch_payload()
|
2022-03-04 07:49:23 +00:00
|
|
|
assert (param.data.numel() == 1)
|
2022-03-03 04:42:57 +00:00
|
|
|
|
|
|
|
|
2022-03-04 07:49:23 +00:00
|
|
|
@pytest.mark.dist
|
2022-03-08 04:03:35 +00:00
|
|
|
@pytest.mark.parametrize("world_size", [1, 2])
|
|
|
|
def test_shard_param_v2(world_size):
|
2022-03-04 07:49:23 +00:00
|
|
|
run_func = partial(_run_shard_param_v2, world_size=world_size, port=free_port())
|
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
2022-03-03 04:42:57 +00:00
|
|
|
|
2022-03-04 07:49:23 +00:00
|
|
|
|
|
|
|
def _run_test_shard_param(rank, world_size, port):
|
2022-03-03 04:42:57 +00:00
|
|
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
|
2022-03-04 07:49:23 +00:00
|
|
|
param = torch.nn.Parameter(torch.randn(2, 3))
|
|
|
|
param_ref = deepcopy(param)
|
|
|
|
sparam = ShardedParamV2(param=param, process_group=None)
|
|
|
|
print(sparam.data)
|
|
|
|
print(param_ref.data)
|
|
|
|
|
2022-03-01 10:17:01 +00:00
|
|
|
logger = get_dist_logger()
|
|
|
|
model = Net()
|
|
|
|
|
|
|
|
# add an attribute as ca_attr to hijack the access to param.data
|
|
|
|
for _, param in model.named_parameters():
|
|
|
|
numel_ref = (param.numel() + world_size - 1) // world_size
|
2022-03-03 04:42:57 +00:00
|
|
|
param.ca_attr = ShardedParam(param)
|
2022-03-01 10:17:01 +00:00
|
|
|
param.ca_attr.shard()
|
|
|
|
param_data = param.ca_attr.payload(torch.device('cpu'))
|
2022-03-03 04:42:57 +00:00
|
|
|
assert (numel_ref == param_data.numel())
|
2022-03-01 10:17:01 +00:00
|
|
|
|
|
|
|
for _, param in model.named_parameters():
|
|
|
|
param.ca_attr.gather()
|
|
|
|
param_data = param.ca_attr.payload(torch.device('cpu'))
|
2022-03-03 04:42:57 +00:00
|
|
|
|
2022-03-01 10:17:01 +00:00
|
|
|
disable_existing_loggers([logger])
|
|
|
|
|
2022-03-03 04:42:57 +00:00
|
|
|
|
2022-03-01 10:17:01 +00:00
|
|
|
@pytest.mark.dist
|
2022-03-08 04:03:35 +00:00
|
|
|
@pytest.mark.parametrize("world_size", [1, 2])
|
|
|
|
def test_shard_param(world_size):
|
2022-03-04 07:49:23 +00:00
|
|
|
run_func = partial(_run_test_shard_param, world_size=world_size, port=free_port())
|
2022-03-01 10:17:01 +00:00
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
2022-03-03 04:42:57 +00:00
|
|
|
|
2022-03-08 04:03:35 +00:00
|
|
|
def _run_init_shard_param(rank, world_size, port):
|
2022-03-04 07:49:23 +00:00
|
|
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
2022-03-08 04:03:35 +00:00
|
|
|
param = torch.nn.Parameter(data=torch.rand(world_size, 3))
|
2022-03-04 07:49:23 +00:00
|
|
|
sparam = ShardedParam(param, None, True)
|
|
|
|
payload = sparam.payload(torch.device('cuda'))
|
|
|
|
assert (list(payload.shape) == [3])
|
|
|
|
del sparam
|
|
|
|
|
2022-03-08 04:03:35 +00:00
|
|
|
param_shape = (world_size, 3)
|
2022-03-04 07:49:23 +00:00
|
|
|
sparam = ShardedParam(param_shape, process_group=None, is_sharded=True, device=torch.device('cpu'))
|
|
|
|
payload = sparam.payload(torch.device('cuda'))
|
|
|
|
assert (list(payload.shape) == [3])
|
|
|
|
|
2022-03-08 04:03:35 +00:00
|
|
|
param_shape = (world_size, 3)
|
2022-03-04 07:49:23 +00:00
|
|
|
sparam = ShardedParam(param_shape, process_group=None, is_sharded=False, device=torch.device('cpu'))
|
|
|
|
payload = sparam.payload(torch.device('cuda'))
|
2022-03-08 04:03:35 +00:00
|
|
|
assert (list(payload.shape) == [world_size, 3])
|
2022-03-04 07:49:23 +00:00
|
|
|
|
|
|
|
|
2022-03-03 04:42:57 +00:00
|
|
|
@pytest.mark.dist
|
2022-03-08 04:03:35 +00:00
|
|
|
@pytest.mark.parametrize("world_size", [1, 4])
|
|
|
|
def test_init_shard_param(world_size):
|
|
|
|
run_func = partial(_run_init_shard_param, world_size=world_size, port=free_port())
|
2022-03-03 04:42:57 +00:00
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
|
|
|
2022-03-01 10:17:01 +00:00
|
|
|
if __name__ == '__main__':
|
2022-03-08 04:03:35 +00:00
|
|
|
test_shard_tensor(2)
|
|
|
|
test_shard_param(2)
|
|
|
|
test_shard_param_v2(2)
|
|
|
|
test_init_shard_param(4)
|