ColossalAI/colossalai/zero/sharded_optim/sharded_optim_v2.py

226 lines
9.2 KiB
Python
Raw Normal View History

2022-03-03 07:06:18 +00:00
from enum import Enum
from typing import Callable, Dict, Optional, Union
2022-03-03 07:06:18 +00:00
import torch
import torch.distributed as dist
import torch.nn as nn
from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
2022-03-03 07:06:18 +00:00
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn.optimizer import ColossalaiOptimizer
2022-03-09 08:09:36 +00:00
from colossalai.zero.shard_utils import BaseShardStrategy
2022-03-03 07:06:18 +00:00
from colossalai.zero.sharded_model import ShardedModelV2
2022-03-09 08:09:36 +00:00
from colossalai.zero.sharded_model._zero3_utils import cast_tensor_to_fp32
2022-03-03 07:06:18 +00:00
from torch import Tensor
from torch.distributed import ProcessGroup
2022-03-03 07:42:53 +00:00
from torch.nn.parameter import Parameter
2022-03-03 07:06:18 +00:00
from torch.optim import Optimizer
from typing import Type, Any
2022-03-03 07:06:18 +00:00
from ._utils import has_inf_or_nan
class OptimState(Enum):
SCALED = 1
UNSCALED = 2
2022-03-03 07:55:27 +00:00
class ShardedOptimizerV2(ColossalaiOptimizer):
2022-03-03 07:06:18 +00:00
def __init__(self,
2022-03-09 08:09:36 +00:00
sharded_model: ShardedModelV2,
optimizer_class: Type[Optimizer],
2022-03-03 07:06:18 +00:00
cpu_offload: bool = False,
initial_scale: float = 2**32,
min_scale: float = 1,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: float = 1000,
hysteresis: float = 2,
max_scale: int = 2**32,
dp_process_group: Optional[ProcessGroup] = None,
mp_process_group: Optional[ProcessGroup] = None,
**defaults: Any) -> None:
"""
:param sharded_model: A sharded model initialized by class ShardedModelV2. The optimizer will use the
shard strategy provided by sharded model to shard param fp32 tensors.
:type sharded_model: sharded_model
:param optimizer_class: A class type of Optimizer
:type optimizer_class: Type[Optimizer]
:param cpu_offload: is offloading the optimizer states to CPU.
:type cpu_offload: bool
:param initial_scale: initial scale used by DynamicGradScaler
:type initial_scale: float
:param min_scale: min scale used by DynamicGradScaler
:type min_scale: float
:param growth_factor: growth_factor used by DynamicGradScaler
:type growth_factor: float
:param backoff_factor: backoff_factor used by DynamicGradScaler
:type backoff_factor: float
:param growth_interval: growth_interval used by DynamicGradScaler
:type growth_interval: float
:param hysteresis: hysteresis used by DynamicGradScaler
:type hysteresis: float
:param max_scale: max_scale used by DynamicGradScaler
:type max_scale: float
:param dp_process_group: data paralle process group
:type dp_process_group: Optional[ProcessGroup]
:param mp_process_group: model paralle process group
:type mp_process_group: Optional[ProcessGroup]
:**defaults: any trailing arguments, which are forwarded to the local optimizer.
:type defaults: dict()
"""
2022-03-09 08:09:36 +00:00
assert isinstance(sharded_model, ShardedModelV2), 'model must be wrapped with ShardedModel'
self._optim_defaults = defaults
# initialize the M, V as zeros tensors and initialize param fp32 from sharded_model.parameters()
self.optimizer = optimizer_class(sharded_model.parameters(), **self._optim_defaults)
super().__init__(self.optimizer)
self.shard_strategy = sharded_model.shard_strategy
2022-03-09 08:09:36 +00:00
self.model: ShardedModelV2 = sharded_model
if cpu_offload and not sharded_model.cpu_offload:
raise RuntimeError(
f"ShardedOptimizerV2 using cpu_offload, but the sharded_model used to initialize it dose not use cpu_offload"
)
2022-03-03 07:42:53 +00:00
self.device = torch.cuda.current_device() if not cpu_offload else torch.device('cpu')
2022-03-03 07:06:18 +00:00
self.optim_state: OptimState = OptimState.UNSCALED
self.dp_process_group = dp_process_group or gpc.get_group(ParallelMode.DATA)
self.mp_process_group = mp_process_group or gpc.get_group(ParallelMode.MODEL)
# Grad scaler
self.grad_scaler = DynamicGradScaler(initial_scale=initial_scale,
min_scale=min_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
max_scale=max_scale)
2022-03-09 08:09:36 +00:00
self._found_overflow: Tensor = torch.FloatTensor([0]).to(torch.cuda.current_device())
2022-03-03 07:42:53 +00:00
2022-03-09 08:09:36 +00:00
# Store fp32 param shards
2022-03-03 07:42:53 +00:00
self.master_params: Dict[Parameter, Tensor] = {}
2022-03-03 07:06:18 +00:00
for group in self.optimizer.param_groups:
2022-03-03 07:06:18 +00:00
for p in group['params']:
2022-03-09 08:09:36 +00:00
assert hasattr(p, 'col_attr'), 'The parameter must be wrapped with ShardedParam'
is_param_sharded = p.col_attr.data.is_sharded
if not is_param_sharded:
# TODO (ver217): we may not use shard / gather here
# Param is no sharded, which means we use ZeRO-2 here
# As we only store param shard, we shard it here
self.shard_strategy.shard([p.col_attr.data])
self.master_params[p] = cast_tensor_to_fp32(p.col_attr.data.payload).to(self.device)
if not is_param_sharded:
# In this branch, there's no need to shard param
# So we gather here
self.shard_strategy.gather([p.col_attr.data])
2022-03-03 07:06:18 +00:00
def step(self, *args, **kwargs):
# unscale grads if scaled
if self.optim_state == OptimState.SCALED:
self._unscale_grads()
found_inf = self._check_overflow()
self.grad_scaler.update(found_inf)
if found_inf:
self.zero_grad()
return
2022-03-10 09:51:50 +00:00
# assign master param pointers to p.data.
# We will not trigger data copy here.
2022-03-03 07:06:18 +00:00
for group in self.optim.param_groups:
for p in group['params']:
2022-03-03 07:42:53 +00:00
p.data = self.master_params[p]
2022-03-09 08:09:36 +00:00
# Now p.data is sharded
# So optimizer states are sharded naturally
2022-03-10 09:51:50 +00:00
2022-03-03 07:06:18 +00:00
ret = self.optim.step(*args, **kwargs)
2022-03-10 09:51:50 +00:00
# Copy master param data (fp32) to payload of col_attr (fp16)
# TODO() improve efficiency by gathering tensors into a chunk and transfering
# a chunk.
2022-03-03 07:06:18 +00:00
for group in self.optim.param_groups:
for p in group['params']:
2022-03-09 08:09:36 +00:00
is_param_sharded = p.col_attr.data.is_sharded
if not is_param_sharded:
# We use ZeRO-2 here
# The `p.col_attr.data` saves full fp16 param
# But we only have updated fp32 param shard here
# So we first shard full fp16 param and copy fp32 param shard to it
# Then we will gather them
self.shard_strategy.shard([p.col_attr.data])
# We have to use `copy_payload` instead of `reset_payload`
# Since p.data is fp32 and p.col_attr.data is fp16
2022-03-10 09:51:50 +00:00
# TODO() optimize this line CPU (fp32) -> GPU (fp16)
2022-03-09 08:09:36 +00:00
p.col_attr.data.copy_payload(p.data)
2022-03-10 09:51:50 +00:00
2022-03-09 08:09:36 +00:00
if not is_param_sharded:
# We gather full fp16 param here
self.shard_strategy.gather([p.col_attr.data])
p.data = p.col_attr.data.payload
2022-03-03 07:06:18 +00:00
return ret
def backward(self, loss: Tensor) -> None:
loss = self.loss_scale * loss
self.optim_state = OptimState.SCALED
2022-03-09 08:09:36 +00:00
self.model.backward(loss)
2022-03-03 07:06:18 +00:00
def backward_by_grad(self, tensor: Tensor, grad: Tensor) -> None:
2022-03-09 08:09:36 +00:00
self.model.backward_by_grad(tensor, grad)
2022-03-03 07:06:18 +00:00
def clip_grad_norm(self, model: nn.Module, max_norm: float):
if self.optim_state == OptimState.SCALED:
self._unscale_grads()
return super().clip_grad_norm(model, max_norm)
@property
def loss_scale(self):
2022-03-09 08:09:36 +00:00
return self.grad_scaler.scale.item()
2022-03-03 07:06:18 +00:00
def _check_overflow(self):
# clear previous overflow record
self._found_overflow.fill_(0.0)
# check for overflow
for group in self.optim.param_groups:
for p in group['params']:
if has_inf_or_nan(p.grad):
self._found_overflow.fill_(1.0)
break
# all-reduce across dp group
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self.dp_process_group)
# all-reduce over model parallel group
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self.mp_process_group)
2022-03-03 07:50:30 +00:00
return self._found_overflow.item() > 0
2022-03-03 07:06:18 +00:00
def _unscale_grads(self):
assert self.optim_state == OptimState.SCALED
for group in self.optim.param_groups:
for p in group['params']:
if p.grad is not None:
p.grad.data.div_(self.loss_scale)
self.optim_state = OptimState.UNSCALED
2022-03-09 08:09:36 +00:00
def zero_grad(self, *args, **kwargs):
# We must set grad to None
# Because we will judge whether local grad accumulation
# is enabled by wheter grad is None
self.optim.zero_grad(set_to_none=True)