mirror of https://github.com/hpcaitech/ColossalAI
[zero] find miss code (#378)
parent
6b6002962a
commit
b5f43acee3
@ -0,0 +1,3 @@
|
||||
from .bucket_tensor_copy import BucketizedTensorCopy
|
||||
|
||||
__all__ = ['BucketizedTensorCopy']
|
@ -0,0 +1,61 @@
|
||||
import torch
|
||||
from colossalai.zero.sharded_param import ShardedParamV2
|
||||
from colossalai.utils import get_current_device
|
||||
from typing import List
|
||||
|
||||
|
||||
class BucketizedTensorCopy(object):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
chunk_size: int,
|
||||
):
|
||||
r"""
|
||||
torch.nn.Parameter CPU (fp32) -> ShardedParam GPU (fp16)
|
||||
TODO(jiaruifang) The class is a little bit hardcoded
|
||||
I will make it more general later.
|
||||
"""
|
||||
|
||||
self.chunk_size = chunk_size
|
||||
self._offset = 0
|
||||
self._cpu_buffer = torch.empty(chunk_size, dtype=torch.float, device=torch.device("cpu:0"), pin_memory=True)
|
||||
self._cuda_buffer = torch.empty(chunk_size,
|
||||
dtype=torch.half,
|
||||
device=torch.device(f"cuda:{get_current_device()}"))
|
||||
|
||||
self._buffered_param_list: List[ShardedParamV2] = []
|
||||
self._numel_list = []
|
||||
|
||||
def copy(self, src_param: torch.nn.Parameter, target_param: ShardedParamV2):
|
||||
assert isinstance(target_param, ShardedParamV2)
|
||||
assert isinstance(src_param, torch.nn.Parameter)
|
||||
|
||||
numel = src_param.numel()
|
||||
|
||||
if self._offset + numel > self.chunk_size:
|
||||
self.flush()
|
||||
|
||||
assert src_param.data.device.type == 'cpu'
|
||||
self._cpu_buffer.narrow(0, self._offset, numel).copy_(src_param.data.view(-1))
|
||||
|
||||
self._buffered_param_list.append(target_param)
|
||||
self._numel_list.append(numel)
|
||||
|
||||
self._offset += numel
|
||||
|
||||
def flush(self):
|
||||
"""
|
||||
flush to cuda memory
|
||||
"""
|
||||
self._cuda_buffer.copy_(self._cpu_buffer)
|
||||
flush_offset = 0
|
||||
for sparam, numel in zip(self._buffered_param_list, self._numel_list):
|
||||
sparam.data.copy_payload(self._cpu_buffer.narrow(0, flush_offset, numel))
|
||||
flush_offset += numel
|
||||
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self._buffered_param_list = []
|
||||
self._numel_list = []
|
||||
self._offset = 0
|
@ -0,0 +1,39 @@
|
||||
from colossalai.utils.commons import BucketizedTensorCopy
|
||||
from colossalai.zero.sharded_param import ShardedParamV2
|
||||
from colossalai.utils import free_port
|
||||
import torch
|
||||
import colossalai
|
||||
|
||||
|
||||
def test_bucket_copy():
|
||||
# init dist env
|
||||
colossalai.launch(config={}, rank=0, world_size=1, host='localhost', port=free_port(), backend='nccl')
|
||||
|
||||
copyer = BucketizedTensorCopy(20)
|
||||
|
||||
shape_list = [(2, 3), (5), (8), (12)]
|
||||
src_param_list = []
|
||||
tgt_param_list = []
|
||||
for shape in shape_list:
|
||||
# on CPU
|
||||
src_param = torch.nn.Parameter(torch.randn(shape, dtype=torch.float, device=torch.device('cpu')))
|
||||
print(src_param)
|
||||
# on GPU
|
||||
tgt_param = ShardedParamV2(torch.nn.Parameter(torch.ones(shape, dtype=torch.half, device=torch.device('cuda'))))
|
||||
|
||||
src_param_list.append(src_param)
|
||||
tgt_param_list.append(tgt_param)
|
||||
|
||||
copyer.copy(src_param, tgt_param)
|
||||
|
||||
copyer.flush()
|
||||
|
||||
for src_param, tgt_param in zip(src_param_list, tgt_param_list):
|
||||
print(tgt_param.data.payload)
|
||||
diff = src_param.cpu().float() - tgt_param.data.payload.cpu().float()
|
||||
assert torch.allclose(src_param.cpu().float(), tgt_param.data.payload.cpu().float(), rtol=1e-03,
|
||||
atol=1e-03), f"diff {diff}"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_bucket_copy()
|
Loading…
Reference in new issue