* [2023/03] [AWS and Google Fund Colossal-AI with Startup Cloud Programs](https://www.hpc-ai.tech/blog/aws-and-google-fund-colossal-ai-with-startup-cloud-programs)
* [2023/02] [Open source solution replicates ChatGPT training process! Ready to go with only 1.6GB GPU memory](https://www.hpc-ai.tech/blog/colossal-ai-chatgpt)
* [2023/01] [Hardware Savings Up to 46 Times for AIGC and Automatic Parallelism](https://medium.com/pytorch/latest-colossal-ai-boasts-novel-automatic-parallelism-and-offers-savings-up-to-46x-for-stable-1453b48f3f02)
* [2022/11] [Diffusion Pretraining and Hardware Fine-Tuning Can Be Almost 7X Cheaper](https://www.hpc-ai.tech/blog/diffusion-pretraining-and-hardware-fine-tuning-can-be-almost-7x-cheaper)
* [2022/10] [Use a Laptop to Analyze 90% of Proteins, With a Single-GPU Inference Sequence Exceeding 10,000](https://www.hpc-ai.tech/blog/use-a-laptop-to-analyze-90-of-proteins-with-a-single-gpu-inference-sequence-exceeding)
* [2022/09] [HPC-AI Tech Completes $6 Million Seed and Angel Round Fundraising](https://www.hpc-ai.tech/blog/hpc-ai-tech-completes-6-million-seed-and-angel-round-fundraising-led-by-bluerun-ventures-in-the)
- [PaLM-colossalai](https://github.com/hpcaitech/PaLM-colossalai): Scalable implementation of Google's Pathways Language Model ([PaLM](https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html)).
- [Open Pretrained Transformer (OPT)](https://github.com/facebookresearch/metaseq), a 175-Billion parameter AI language model released by Meta, which stimulates AI programmers to perform various downstream tasks and application deployments because public pretrained model weights.
Please visit our [documentation](https://www.colossalai.org/) and [examples](https://github.com/hpcaitech/ColossalAI/tree/main/examples) for more details.
- [BLOOM](https://github.com/hpcaitech/EnergonAI/tree/main/examples/bloom): Reduce hardware deployment costs of 176-billion-parameter BLOOM by more than 10 times.
Acceleration of AIGC (AI-Generated Content) models such as [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion) and [Stable Diffusion v2](https://github.com/Stability-AI/stablediffusion).
- [Training](https://github.com/hpcaitech/ColossalAI/tree/main/examples/images/diffusion): Reduce Stable Diffusion memory consumption by up to 5.6x and hardware cost by up to 46x (from A100 to RTX3060).
- [DreamBooth Fine-tuning](https://github.com/hpcaitech/ColossalAI/tree/main/examples/images/dreambooth): Personalize your model using just 3-5 images of the desired subject.
- [FastFold](https://github.com/hpcaitech/FastFold): accelerating training and inference on GPU Clusters, faster data processing, inference sequence containing more than 10000 residues.
> Environment Requirement: PyTorch 1.10 ~ 1.12 (WIP higher version), Python >= 3.7, CUDA >= 11.0. If you encounter any problem about installation, you may want to raise an [issue](https://github.com/hpcaitech/ColossalAI/issues/new/choose) in this repository.
However, if you want to build the PyTorch extensions during installation, you can set `CUDA_EXT=1`.
```bash
CUDA_EXT=1 pip install colossalai
```
**Otherwise, CUDA kernels will be built during runtime when you actually need it.**
We also keep release the nightly version to PyPI on a weekly basis. This allows you to access the unreleased features and bug fixes in the main branch.
You can directly pull the docker image from our [DockerHub page](https://hub.docker.com/r/hpcaitech/colossalai). The image is automatically uploaded upon release.
> Building Colossal-AI from scratch requires GPU support, you need to use Nvidia Docker Runtime as the default when doing `docker build`. More details can be found [here](https://stackoverflow.com/questions/59691207/docker-build-with-nvidia-runtime).
> We recommend you install Colossal-AI from our [project page](https://www.colossalai.org) directly.
and [WeChat(微信)](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png "qrcode") to share your suggestions, feedback, and questions with our engineering team.
We leverage the power of [GitHub Actions](https://github.com/features/actions) to automate our development, release and deployment workflows. Please check out this [documentation](.github/workflows/README.md) on how the automated workflows are operated.
This project is inspired by some related projects (some by our team and some by other organizations). We would like to credit these amazing projects as listed in the [Reference List](./REFERENCE.md).
To cite this project, you can use the following BibTeX citation.
Colossal-AI has been accepted as official tutorials by top conference [SC](https://sc22.supercomputing.org/), [AAAI](https://aaai.org/Conferences/AAAI-23/), [PPoPP](https://ppopp23.sigplan.org/), [CVPR](https://cvpr2023.thecvf.com/), etc.