|
|
|
import os
|
|
|
|
from typing import Dict, Tuple, Union, Optional
|
|
|
|
|
|
|
|
from accelerate import load_checkpoint_and_dispatch
|
|
|
|
from torch.nn import Module
|
|
|
|
from transformers import AutoModel, AutoTokenizer
|
|
|
|
from transformers.tokenization_utils import PreTrainedTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
|
|
|
|
# transformer.word_embeddings 占用1层
|
|
|
|
# transformer.final_layernorm 和 lm_head 占用1层
|
|
|
|
# transformer.layers 占用 28 层
|
|
|
|
# 总共30层分配到num_gpus张卡上
|
|
|
|
num_trans_layers = 28
|
|
|
|
per_gpu_layers = 30 / num_gpus
|
|
|
|
|
|
|
|
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
|
|
|
|
# windows下 model.device 会被设置成 transformer.word_embeddings.device
|
|
|
|
# linux下 model.device 会被设置成 lm_head.device
|
|
|
|
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
|
|
|
|
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
|
|
|
|
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
|
|
|
|
device_map = {'transformer.word_embeddings': 0,
|
|
|
|
'transformer.final_layernorm': 0, 'lm_head': 0}
|
|
|
|
|
|
|
|
used = 2
|
|
|
|
gpu_target = 0
|
|
|
|
for i in range(num_trans_layers):
|
|
|
|
if used >= per_gpu_layers:
|
|
|
|
gpu_target += 1
|
|
|
|
used = 0
|
|
|
|
assert gpu_target < num_gpus
|
|
|
|
device_map[f'transformer.layers.{i}'] = gpu_target
|
|
|
|
used += 1
|
|
|
|
|
|
|
|
return device_map
|
|
|
|
|
|
|
|
|
|
|
|
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2,
|
|
|
|
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir",
|
|
|
|
tokenizer: Optional[PreTrainedTokenizer] = None, **kwargs) -> Module:
|
|
|
|
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs)
|
|
|
|
model = model.eval()
|
|
|
|
|
|
|
|
device_map = auto_configure_device_map(num_gpus)
|
|
|
|
try:
|
|
|
|
model = load_checkpoint_and_dispatch(
|
|
|
|
model, checkpoint_path, device_map=device_map, offload_folder="offload", offload_state_dict=True).half()
|
|
|
|
except ValueError:
|
|
|
|
# index.json not found
|
|
|
|
print(f"index.json not found, auto fixing and saving model to {multi_gpu_model_cache_dir} ...")
|
|
|
|
|
|
|
|
assert multi_gpu_model_cache_dir is not None, "using auto fix, cache_dir must not be None"
|
|
|
|
model.save_pretrained(multi_gpu_model_cache_dir, max_shard_size='2GB')
|
|
|
|
model = load_checkpoint_and_dispatch(
|
|
|
|
model, multi_gpu_model_cache_dir, device_map=device_map,
|
|
|
|
offload_folder="offload", offload_state_dict=True).half()
|
|
|
|
|
|
|
|
if tokenizer is not None:
|
|
|
|
tokenizer.save_pretrained(multi_gpu_model_cache_dir)
|
|
|
|
print(f"loading model successfully, you should use checkpoint_path={multi_gpu_model_cache_dir} next time")
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def load_model_and_tokenizer(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 1,
|
|
|
|
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir",
|
|
|
|
**kwargs) -> Tuple[Module, PreTrainedTokenizer]:
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs)
|
|
|
|
if num_gpus < 2:
|
|
|
|
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda()
|
|
|
|
model = model.eval()
|
|
|
|
else:
|
|
|
|
model = load_model_on_gpus(checkpoint_path, num_gpus=num_gpus,
|
|
|
|
multi_gpu_model_cache_dir=multi_gpu_model_cache_dir,
|
|
|
|
tokenizer=tokenizer, **kwargs)
|
|
|
|
return model, tokenizer
|