mirror of https://github.com/THUDM/ChatGLM-6B
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
67 lines
2.7 KiB
67 lines
2.7 KiB
2 years ago
|
import os
|
||
|
from typing import Dict, Tuple, Union
|
||
|
|
||
|
from accelerate import load_checkpoint_and_dispatch
|
||
|
from transformers import AutoModel, AutoTokenizer
|
||
|
|
||
|
|
||
|
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
|
||
|
# transformer.word_embeddings 占用1层
|
||
|
# transformer.final_layernorm 和 lm_head 占用1层
|
||
|
# transformer.layers 占用 28 层
|
||
|
# 总共30层分配到num_gpus张卡上
|
||
|
num_trans_layers = 28
|
||
|
per_gpu_layers = 30 / num_gpus
|
||
|
|
||
|
device_map = {'transformer.word_embeddings': 0,
|
||
|
'transformer.final_layernorm': num_gpus - 1, 'lm_head': num_gpus - 1}
|
||
|
|
||
|
used = 1
|
||
|
gpu_target = 0
|
||
|
for i in range(num_trans_layers):
|
||
|
if used >= per_gpu_layers:
|
||
|
gpu_target += 1
|
||
|
used = 0
|
||
|
assert gpu_target < num_gpus
|
||
|
device_map[f'transformer.layers.{i}'] = gpu_target
|
||
|
used += 1
|
||
|
|
||
|
return device_map
|
||
|
|
||
|
|
||
|
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike],
|
||
|
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir",
|
||
|
num_gpus: int = 2, **kwargs):
|
||
|
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs)
|
||
|
model = model.eval()
|
||
|
|
||
|
device_map = auto_configure_device_map(num_gpus)
|
||
|
try:
|
||
|
model = load_checkpoint_and_dispatch(
|
||
|
model, checkpoint_path, device_map=device_map, offload_folder="offload", offload_state_dict=True).half()
|
||
|
except ValueError:
|
||
|
# index.json not found
|
||
|
print(f"index.json not found, auto fixing and saving model to {multi_gpu_model_cache_dir} ...")
|
||
|
|
||
|
assert multi_gpu_model_cache_dir is not None, "using auto fix, cache_dir must not be None"
|
||
|
model.save_pretrained(multi_gpu_model_cache_dir, max_shard_size='2GB')
|
||
|
model = load_checkpoint_and_dispatch(
|
||
|
model, multi_gpu_model_cache_dir, device_map=device_map,
|
||
|
offload_folder="offload", offload_state_dict=True).half()
|
||
|
|
||
|
print(f"loading model successfully, you should use checkpoint_path={multi_gpu_model_cache_dir} next time")
|
||
|
|
||
|
return model
|
||
|
|
||
|
|
||
|
def load_mode_and_tokenizer(checkpoint_path: Union[str, os.PathLike],
|
||
|
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir",
|
||
|
num_gpus: int = 1, **kwargs) -> Tuple[AutoModel, AutoTokenizer]:
|
||
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs)
|
||
|
if num_gpus < 2:
|
||
|
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda()
|
||
|
model = model.eval()
|
||
|
else:
|
||
|
model = load_model_on_gpus(checkpoint_path, multi_gpu_model_cache_dir, num_gpus, **kwargs)
|
||
|
return model, tokenizer
|