mirror of https://github.com/THUDM/ChatGLM-6B
多GPU支持, 模型文件夹没有index.json会自动保存模型到multi_gpu_model_cache_dir以支持多GPU
parent
4ee042a8e6
commit
8826b947c3
12
api.py
12
api.py
|
@ -1,6 +1,10 @@
|
|||
import datetime
|
||||
import json
|
||||
|
||||
import uvicorn
|
||||
from fastapi import FastAPI, Request
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
import uvicorn, json, datetime
|
||||
|
||||
from utils import load_mode_and_tokenizer
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
@ -30,6 +34,4 @@ async def create_item(request: Request):
|
|||
if __name__ == '__main__':
|
||||
uvicorn.run('api:app', host='0.0.0.0', port=8000, workers=1)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||||
model.eval()
|
||||
model, tokenizer = load_mode_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)
|
||||
|
|
|
@ -1,44 +0,0 @@
|
|||
'''
|
||||
Author: lichuang
|
||||
Date: 2023-03-23 09:18:13
|
||||
Description: 将模型加载到多张GPU卡中,根据gpu的数量自动分配平均的显存占用
|
||||
'''
|
||||
from typing import Dict
|
||||
|
||||
from accelerate import load_checkpoint_and_dispatch
|
||||
from transformers import AutoModel
|
||||
|
||||
|
||||
def auto_configure_device_map(num_gpus) -> Dict[str, int]:
|
||||
# transformer.word_embeddings 占用1层
|
||||
# transformer.final_layernorm 和 lm_head 占用1层
|
||||
# transformer.layers 占用 28 层
|
||||
# 总共30层分配到num_gpus张卡上
|
||||
num_trans_layers = 28
|
||||
per_gpu_layers = 30 / num_gpus
|
||||
|
||||
device_map = {'transformer.word_embeddings': 0,
|
||||
'transformer.final_layernorm': num_gpus - 1, 'lm_head': num_gpus - 1}
|
||||
|
||||
used = 1
|
||||
gpu_target = 0
|
||||
for i in range(num_trans_layers):
|
||||
if used >= per_gpu_layers:
|
||||
gpu_target += 1
|
||||
used = 0
|
||||
assert gpu_target < num_gpus
|
||||
device_map[f'transformer.layers.{i}'] = gpu_target
|
||||
used += 1
|
||||
|
||||
return device_map
|
||||
|
||||
|
||||
def load_model_on_gpus(checkpoint_path, num_gpus=2):
|
||||
device_map = auto_configure_device_map(num_gpus)
|
||||
|
||||
model = AutoModel.from_pretrained(
|
||||
checkpoint_path, trust_remote_code=True)
|
||||
model = model.eval()
|
||||
model = load_checkpoint_and_dispatch(
|
||||
model, checkpoint_path, device_map=device_map, offload_folder="offload", offload_state_dict=True).half()
|
||||
return model
|
|
@ -1,10 +1,9 @@
|
|||
import os
|
||||
import platform
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
from chatglm_parallel import load_model_on_gpus
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
|
||||
from utils import load_mode_and_tokenizer
|
||||
|
||||
model, tokenizer = load_mode_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)
|
||||
|
||||
os_name = platform.system()
|
||||
clear_command = 'cls' if os_name == 'Windows' else 'clear'
|
||||
|
|
|
@ -0,0 +1,66 @@
|
|||
import os
|
||||
from typing import Dict, Tuple, Union
|
||||
|
||||
from accelerate import load_checkpoint_and_dispatch
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
|
||||
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
|
||||
# transformer.word_embeddings 占用1层
|
||||
# transformer.final_layernorm 和 lm_head 占用1层
|
||||
# transformer.layers 占用 28 层
|
||||
# 总共30层分配到num_gpus张卡上
|
||||
num_trans_layers = 28
|
||||
per_gpu_layers = 30 / num_gpus
|
||||
|
||||
device_map = {'transformer.word_embeddings': 0,
|
||||
'transformer.final_layernorm': num_gpus - 1, 'lm_head': num_gpus - 1}
|
||||
|
||||
used = 1
|
||||
gpu_target = 0
|
||||
for i in range(num_trans_layers):
|
||||
if used >= per_gpu_layers:
|
||||
gpu_target += 1
|
||||
used = 0
|
||||
assert gpu_target < num_gpus
|
||||
device_map[f'transformer.layers.{i}'] = gpu_target
|
||||
used += 1
|
||||
|
||||
return device_map
|
||||
|
||||
|
||||
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike],
|
||||
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir",
|
||||
num_gpus: int = 2, **kwargs):
|
||||
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs)
|
||||
model = model.eval()
|
||||
|
||||
device_map = auto_configure_device_map(num_gpus)
|
||||
try:
|
||||
model = load_checkpoint_and_dispatch(
|
||||
model, checkpoint_path, device_map=device_map, offload_folder="offload", offload_state_dict=True).half()
|
||||
except ValueError:
|
||||
# index.json not found
|
||||
print(f"index.json not found, auto fixing and saving model to {multi_gpu_model_cache_dir} ...")
|
||||
|
||||
assert multi_gpu_model_cache_dir is not None, "using auto fix, cache_dir must not be None"
|
||||
model.save_pretrained(multi_gpu_model_cache_dir, max_shard_size='2GB')
|
||||
model = load_checkpoint_and_dispatch(
|
||||
model, multi_gpu_model_cache_dir, device_map=device_map,
|
||||
offload_folder="offload", offload_state_dict=True).half()
|
||||
|
||||
print(f"loading model successfully, you should use checkpoint_path={multi_gpu_model_cache_dir} next time")
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def load_mode_and_tokenizer(checkpoint_path: Union[str, os.PathLike],
|
||||
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir",
|
||||
num_gpus: int = 1, **kwargs) -> Tuple[AutoModel, AutoTokenizer]:
|
||||
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs)
|
||||
if num_gpus < 2:
|
||||
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda()
|
||||
model = model.eval()
|
||||
else:
|
||||
model = load_model_on_gpus(checkpoint_path, multi_gpu_model_cache_dir, num_gpus, **kwargs)
|
||||
return model, tokenizer
|
|
@ -1,9 +1,7 @@
|
|||
from transformers import AutoTokenizer
|
||||
import gradio as gr
|
||||
from chatglm_parallel import load_model_on_gpus
|
||||
from utils import load_mode_and_tokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
|
||||
model, tokenizer = load_mode_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)
|
||||
|
||||
MAX_TURNS = 20
|
||||
MAX_BOXES = MAX_TURNS * 2
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
from transformers import AutoModel, AutoTokenizer
|
||||
import streamlit as st
|
||||
from streamlit_chat import message
|
||||
from chatglm_parallel import load_model_on_gpus
|
||||
|
||||
from utils import load_mode_and_tokenizer
|
||||
|
||||
st.set_page_config(
|
||||
page_title="ChatGLM-6b 演示",
|
||||
|
@ -12,8 +11,7 @@ st.set_page_config(
|
|||
|
||||
@st.cache_resource
|
||||
def get_model():
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||
model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)
|
||||
model, tokenizer = load_mode_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)
|
||||
return tokenizer, model
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue