mirror of https://github.com/THUDM/ChatGLM-6B
saber
2 years ago
6 changed files with 80 additions and 61 deletions
@ -1,44 +0,0 @@
|
||||
''' |
||||
Author: lichuang |
||||
Date: 2023-03-23 09:18:13 |
||||
Description: 将模型加载到多张GPU卡中,根据gpu的数量自动分配平均的显存占用 |
||||
''' |
||||
from typing import Dict |
||||
|
||||
from accelerate import load_checkpoint_and_dispatch |
||||
from transformers import AutoModel |
||||
|
||||
|
||||
def auto_configure_device_map(num_gpus) -> Dict[str, int]: |
||||
# transformer.word_embeddings 占用1层 |
||||
# transformer.final_layernorm 和 lm_head 占用1层 |
||||
# transformer.layers 占用 28 层 |
||||
# 总共30层分配到num_gpus张卡上 |
||||
num_trans_layers = 28 |
||||
per_gpu_layers = 30 / num_gpus |
||||
|
||||
device_map = {'transformer.word_embeddings': 0, |
||||
'transformer.final_layernorm': num_gpus - 1, 'lm_head': num_gpus - 1} |
||||
|
||||
used = 1 |
||||
gpu_target = 0 |
||||
for i in range(num_trans_layers): |
||||
if used >= per_gpu_layers: |
||||
gpu_target += 1 |
||||
used = 0 |
||||
assert gpu_target < num_gpus |
||||
device_map[f'transformer.layers.{i}'] = gpu_target |
||||
used += 1 |
||||
|
||||
return device_map |
||||
|
||||
|
||||
def load_model_on_gpus(checkpoint_path, num_gpus=2): |
||||
device_map = auto_configure_device_map(num_gpus) |
||||
|
||||
model = AutoModel.from_pretrained( |
||||
checkpoint_path, trust_remote_code=True) |
||||
model = model.eval() |
||||
model = load_checkpoint_and_dispatch( |
||||
model, checkpoint_path, device_map=device_map, offload_folder="offload", offload_state_dict=True).half() |
||||
return model |
@ -0,0 +1,66 @@
|
||||
import os |
||||
from typing import Dict, Tuple, Union |
||||
|
||||
from accelerate import load_checkpoint_and_dispatch |
||||
from transformers import AutoModel, AutoTokenizer |
||||
|
||||
|
||||
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]: |
||||
# transformer.word_embeddings 占用1层 |
||||
# transformer.final_layernorm 和 lm_head 占用1层 |
||||
# transformer.layers 占用 28 层 |
||||
# 总共30层分配到num_gpus张卡上 |
||||
num_trans_layers = 28 |
||||
per_gpu_layers = 30 / num_gpus |
||||
|
||||
device_map = {'transformer.word_embeddings': 0, |
||||
'transformer.final_layernorm': num_gpus - 1, 'lm_head': num_gpus - 1} |
||||
|
||||
used = 1 |
||||
gpu_target = 0 |
||||
for i in range(num_trans_layers): |
||||
if used >= per_gpu_layers: |
||||
gpu_target += 1 |
||||
used = 0 |
||||
assert gpu_target < num_gpus |
||||
device_map[f'transformer.layers.{i}'] = gpu_target |
||||
used += 1 |
||||
|
||||
return device_map |
||||
|
||||
|
||||
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], |
||||
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir", |
||||
num_gpus: int = 2, **kwargs): |
||||
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs) |
||||
model = model.eval() |
||||
|
||||
device_map = auto_configure_device_map(num_gpus) |
||||
try: |
||||
model = load_checkpoint_and_dispatch( |
||||
model, checkpoint_path, device_map=device_map, offload_folder="offload", offload_state_dict=True).half() |
||||
except ValueError: |
||||
# index.json not found |
||||
print(f"index.json not found, auto fixing and saving model to {multi_gpu_model_cache_dir} ...") |
||||
|
||||
assert multi_gpu_model_cache_dir is not None, "using auto fix, cache_dir must not be None" |
||||
model.save_pretrained(multi_gpu_model_cache_dir, max_shard_size='2GB') |
||||
model = load_checkpoint_and_dispatch( |
||||
model, multi_gpu_model_cache_dir, device_map=device_map, |
||||
offload_folder="offload", offload_state_dict=True).half() |
||||
|
||||
print(f"loading model successfully, you should use checkpoint_path={multi_gpu_model_cache_dir} next time") |
||||
|
||||
return model |
||||
|
||||
|
||||
def load_mode_and_tokenizer(checkpoint_path: Union[str, os.PathLike], |
||||
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir", |
||||
num_gpus: int = 1, **kwargs) -> Tuple[AutoModel, AutoTokenizer]: |
||||
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs) |
||||
if num_gpus < 2: |
||||
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda() |
||||
model = model.eval() |
||||
else: |
||||
model = load_model_on_gpus(checkpoint_path, multi_gpu_model_cache_dir, num_gpus, **kwargs) |
||||
return model, tokenizer |
Loading…
Reference in new issue