bugfix: linux多卡部署时weight,input不在同一device上,导致RuntimeError

pull/241/head
saber 2023-03-27 20:51:05 +08:00
parent 8101d75ab8
commit 6a5267aef7
2 changed files with 21 additions and 8 deletions

View File

@ -1,8 +1,10 @@
import os
from typing import Dict, Tuple, Union
from typing import Dict, Tuple, Union, Optional
from accelerate import load_checkpoint_and_dispatch
from torch.nn import Module
from transformers import AutoModel, AutoTokenizer
from transformers.tokenization_utils import PreTrainedTokenizer
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
@ -13,10 +15,16 @@ def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
num_trans_layers = 28
per_gpu_layers = 30 / num_gpus
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
# windows下 model.device 会被设置成 transformer.word_embeddings.device
# linux下 model.device 会被设置成 lm_head.device
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
device_map = {'transformer.word_embeddings': 0,
'transformer.final_layernorm': num_gpus - 1, 'lm_head': num_gpus - 1}
'transformer.final_layernorm': 0, 'lm_head': 0}
used = 1
used = 2
gpu_target = 0
for i in range(num_trans_layers):
if used >= per_gpu_layers:
@ -29,9 +37,9 @@ def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
return device_map
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike],
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2,
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir",
num_gpus: int = 2, **kwargs):
tokenizer: Optional[PreTrainedTokenizer] = None, **kwargs) -> Module:
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs)
model = model.eval()
@ -49,18 +57,22 @@ def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike],
model, multi_gpu_model_cache_dir, device_map=device_map,
offload_folder="offload", offload_state_dict=True).half()
if tokenizer is not None:
tokenizer.save_pretrained(multi_gpu_model_cache_dir)
print(f"loading model successfully, you should use checkpoint_path={multi_gpu_model_cache_dir} next time")
return model
def load_model_and_tokenizer(checkpoint_path: Union[str, os.PathLike],
def load_model_and_tokenizer(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 1,
multi_gpu_model_cache_dir: Union[str, os.PathLike] = "./temp_model_dir",
num_gpus: int = 1, **kwargs) -> Tuple[AutoModel, AutoTokenizer]:
**kwargs) -> Tuple[Module, PreTrainedTokenizer]:
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs)
if num_gpus < 2:
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda()
model = model.eval()
else:
model = load_model_on_gpus(checkpoint_path, multi_gpu_model_cache_dir, num_gpus, **kwargs)
model = load_model_on_gpus(checkpoint_path, num_gpus=num_gpus,
multi_gpu_model_cache_dir=multi_gpu_model_cache_dir,
tokenizer=tokenizer, **kwargs)
return model, tokenizer

View File

@ -1,4 +1,5 @@
import gradio as gr
from utils import load_model_and_tokenizer
model, tokenizer = load_model_and_tokenizer("THUDM/chatglm-6b", num_gpus=1)