2020-12-31 01:18:26 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
# **YOLOv5 + DeepSort 用于目标跟踪与计数**
|
|
|
|
|
🚗🚶♂️ **使用 YOLOv5 和 DeepSort 实现车辆与行人实时跟踪与计数**
|
2021-03-06 13:05:47 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
[![GitHub stars](https://img.shields.io/github/stars/Sharpiless/Yolov5-deepsort-inference?style=social)](https://github.com/Sharpiless/Yolov5-deepsort-inference) [![GitHub forks](https://img.shields.io/github/forks/Sharpiless/Yolov5-deepsort-inference?style=social)](https://github.com/Sharpiless/Yolov5-deepsort-inference) [![License](https://img.shields.io/github/license/Sharpiless/Yolov5-deepsort-inference)](https://github.com/Sharpiless/Yolov5-deepsort-inference/blob/main/LICENSE)
|
2021-05-25 02:09:35 +00:00
|
|
|
|
|
2024-12-04 01:54:07 +00:00
|
|
|
|
最新版本:[https://github.com/Sharpiless/YOLOv11-DeepSort](https://github.com/Sharpiless/YOLOv11-DeepSort)
|
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
---
|
2021-03-06 13:05:47 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
## **📌 项目简介**
|
2021-05-31 03:59:51 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
本项目将 **YOLOv5** 与 **DeepSort** 相结合,实现了对目标的实时跟踪与计数。提供了一个封装的 `Detector` 类,方便将此功能嵌入到自定义项目中。
|
2020-12-31 01:16:52 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
🔗 **阅读完整博客**:[【小白CV教程】YOLOv5+Deepsort实现车辆行人的检测、追踪和计数](https://blog.csdn.net/weixin_44936889/article/details/112002152)
|
2020-12-31 01:16:52 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
---
|
2020-12-31 01:16:52 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
## **🚀 核心功能**
|
|
|
|
|
|
|
|
|
|
- **目标跟踪**:实时跟踪车辆与行人。
|
|
|
|
|
- **计数功能**:轻松统计视频流中的车辆或行人数。
|
|
|
|
|
- **封装式接口**:`Detector` 类封装了检测与跟踪逻辑,便于集成。
|
|
|
|
|
- **高度自定义**:支持训练自己的 YOLOv5 模型并无缝接入框架。
|
|
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## **🔧 使用说明**
|
|
|
|
|
|
|
|
|
|
### **安装依赖**
|
|
|
|
|
```bash
|
|
|
|
|
pip install -r requirements.txt
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
确保安装了 `requirements.txt` 文件中列出的所有依赖。
|
|
|
|
|
### **运行 Demo**
|
|
|
|
|
```bash
|
|
|
|
|
python demo.py
|
|
|
|
|
```
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## **🛠️ 开发说明**
|
|
|
|
|
|
|
|
|
|
### **YOLOv5 检测器**
|
2020-12-31 01:16:52 +00:00
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
class Detector(baseDet):
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super(Detector, self).__init__()
|
|
|
|
|
self.init_model()
|
|
|
|
|
self.build_config()
|
|
|
|
|
|
|
|
|
|
def init_model(self):
|
|
|
|
|
|
|
|
|
|
self.weights = 'weights/yolov5m.pt'
|
|
|
|
|
self.device = '0' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
self.device = select_device(self.device)
|
|
|
|
|
model = attempt_load(self.weights, map_location=self.device)
|
|
|
|
|
model.to(self.device).eval()
|
|
|
|
|
model.half()
|
|
|
|
|
# torch.save(model, 'test.pt')
|
|
|
|
|
self.m = model
|
|
|
|
|
self.names = model.module.names if hasattr(
|
|
|
|
|
model, 'module') else model.names
|
|
|
|
|
|
|
|
|
|
def preprocess(self, img):
|
|
|
|
|
|
|
|
|
|
img0 = img.copy()
|
|
|
|
|
img = letterbox(img, new_shape=self.img_size)[0]
|
|
|
|
|
img = img[:, :, ::-1].transpose(2, 0, 1)
|
|
|
|
|
img = np.ascontiguousarray(img)
|
|
|
|
|
img = torch.from_numpy(img).to(self.device)
|
|
|
|
|
img = img.half() # 半精度
|
|
|
|
|
img /= 255.0 # 图像归一化
|
|
|
|
|
if img.ndimension() == 3:
|
|
|
|
|
img = img.unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
return img0, img
|
|
|
|
|
|
|
|
|
|
def detect(self, im):
|
|
|
|
|
|
|
|
|
|
im0, img = self.preprocess(im)
|
|
|
|
|
|
|
|
|
|
pred = self.m(img, augment=False)[0]
|
|
|
|
|
pred = pred.float()
|
|
|
|
|
pred = non_max_suppression(pred, self.threshold, 0.4)
|
|
|
|
|
|
|
|
|
|
pred_boxes = []
|
|
|
|
|
for det in pred:
|
|
|
|
|
|
|
|
|
|
if det is not None and len(det):
|
|
|
|
|
det[:, :4] = scale_coords(
|
|
|
|
|
img.shape[2:], det[:, :4], im0.shape).round()
|
|
|
|
|
|
|
|
|
|
for *x, conf, cls_id in det:
|
|
|
|
|
lbl = self.names[int(cls_id)]
|
|
|
|
|
if not lbl in ['person', 'car', 'truck']:
|
|
|
|
|
continue
|
|
|
|
|
x1, y1 = int(x[0]), int(x[1])
|
|
|
|
|
x2, y2 = int(x[2]), int(x[3])
|
|
|
|
|
pred_boxes.append(
|
|
|
|
|
(x1, y1, x2, y2, lbl, conf))
|
|
|
|
|
|
|
|
|
|
return im, pred_boxes
|
|
|
|
|
```
|
2024-12-03 11:36:16 +00:00
|
|
|
|
- 调用 `self.detect()` 方法返回图像和预测结果
|
|
|
|
|
### **DeepSort 追踪器**
|
2020-12-31 01:16:52 +00:00
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
|
|
|
|
|
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
|
|
|
|
|
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
|
|
|
|
|
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
|
|
|
|
|
use_cuda=True)
|
|
|
|
|
```
|
2024-12-03 11:36:16 +00:00
|
|
|
|
- 调用 `self.update()` 方法更新追踪结果
|
|
|
|
|
---
|
2020-12-31 01:16:52 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
## **📊 训练自己的模型**
|
2020-12-31 01:16:52 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
如果需要训练自定义的 YOLOv5 模型,请参考以下教程:
|
2020-12-31 01:16:52 +00:00
|
|
|
|
[【小白CV】手把手教你用YOLOv5训练自己的数据集(从Windows环境配置到模型部署)](https://blog.csdn.net/weixin_44936889/article/details/110661862)
|
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
训练完成后,将模型权重文件放置于 `weights` 文件夹中。
|
2020-12-31 01:16:52 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
---
|
2020-12-31 01:16:52 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
## **📦 API 调用**
|
2020-12-31 01:16:52 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
### **初始化检测器**
|
2020-12-31 01:16:52 +00:00
|
|
|
|
```python
|
|
|
|
|
from AIDetector_pytorch import Detector
|
|
|
|
|
|
|
|
|
|
det = Detector()
|
|
|
|
|
```
|
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
### **调用检测接口**
|
2020-12-31 01:16:52 +00:00
|
|
|
|
```python
|
|
|
|
|
func_status = {}
|
|
|
|
|
func_status['headpose'] = None
|
|
|
|
|
|
|
|
|
|
result = det.feedCap(im, func_status)
|
|
|
|
|
```
|
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
- `im`: 输入的 BGR 图像。
|
|
|
|
|
- `result['frame']`: 检测结果的可视化图像。
|
2020-12-31 01:16:52 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
---
|
2020-12-31 01:16:52 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
## **✨ 可视化效果**
|
2021-01-28 09:07:14 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
![效果图](https://img-blog.csdnimg.cn/20201231090541223.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDkzNjg4OQ==,size_16,color_FFFFFF,t_70)
|
2021-01-28 09:07:14 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
---
|
2021-01-28 09:06:53 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
## **📚 联系作者**
|
|
|
|
|
- Bilibili: [https://space.bilibili.com/470550823](https://space.bilibili.com/470550823)
|
|
|
|
|
- CSDN: [https://blog.csdn.net/weixin_44936889](https://blog.csdn.net/weixin_44936889)
|
|
|
|
|
- AI Studio: [https://aistudio.baidu.com/aistudio/personalcenter/thirdview/67156](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/67156)
|
|
|
|
|
- GitHub: [https://github.com/Sharpiless](https://github.com/Sharpiless)
|
2021-01-28 09:06:53 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
---
|
2021-02-22 03:26:01 +00:00
|
|
|
|
|
2024-12-26 08:04:15 +00:00
|
|
|
|
<picture>
|
|
|
|
|
<source
|
|
|
|
|
media="(prefers-color-scheme: dark)"
|
|
|
|
|
srcset="
|
|
|
|
|
https://api.star-history.com/svg?repos=Sharpiless/Yolov5-deepsort-inference&type=Date&theme=dark
|
|
|
|
|
"
|
|
|
|
|
/>
|
|
|
|
|
<source
|
|
|
|
|
media="(prefers-color-scheme: light)"
|
|
|
|
|
srcset="
|
|
|
|
|
https://api.star-history.com/svg?repos=Sharpiless/Yolov5-deepsort-inference&type=Date
|
|
|
|
|
"
|
|
|
|
|
/>
|
|
|
|
|
<img
|
|
|
|
|
alt="Star History Chart"
|
|
|
|
|
src="https://api.star-history.com/svg?repos=Sharpiless/Yolov5-deepsort-inference&type=Date"
|
|
|
|
|
/>
|
|
|
|
|
</picture>
|
2021-02-22 03:26:01 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
## **💡 许可证**
|
2020-12-31 01:16:52 +00:00
|
|
|
|
|
2024-12-03 11:36:16 +00:00
|
|
|
|
本项目遵循 **GNU General Public License v3.0** 协议。
|
2024-12-04 01:54:07 +00:00
|
|
|
|
**标明目标检测部分来源**:[https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5)
|