132 lines
4.1 KiB
Markdown
132 lines
4.1 KiB
Markdown
![]() |
@[TOC](【小白CV教程】YOLOv5+Deepsort实现车辆行人的检测、追踪和计数)
|
|||
|
|
|||
|
# 本文禁止转载!
|
|||
|
本文地址:[https://blog.csdn.net/weixin_44936889/article/details/112002152](https://blog.csdn.net/weixin_44936889/article/details/112002152)
|
|||
|
# 项目简介:
|
|||
|
使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。
|
|||
|
|
|||
|
代码地址(欢迎star):
|
|||
|
|
|||
|
[https://github.com/Sharpiless/Yolov5-deepsort-inference](https://github.com/Sharpiless/Yolov5-deepsort-inference)
|
|||
|
|
|||
|
最终效果:
|
|||
|

|
|||
|
# YOLOv5检测器:
|
|||
|
|
|||
|
```python
|
|||
|
class Detector(baseDet):
|
|||
|
|
|||
|
def __init__(self):
|
|||
|
super(Detector, self).__init__()
|
|||
|
self.init_model()
|
|||
|
self.build_config()
|
|||
|
|
|||
|
def init_model(self):
|
|||
|
|
|||
|
self.weights = 'weights/yolov5m.pt'
|
|||
|
self.device = '0' if torch.cuda.is_available() else 'cpu'
|
|||
|
self.device = select_device(self.device)
|
|||
|
model = attempt_load(self.weights, map_location=self.device)
|
|||
|
model.to(self.device).eval()
|
|||
|
model.half()
|
|||
|
# torch.save(model, 'test.pt')
|
|||
|
self.m = model
|
|||
|
self.names = model.module.names if hasattr(
|
|||
|
model, 'module') else model.names
|
|||
|
|
|||
|
def preprocess(self, img):
|
|||
|
|
|||
|
img0 = img.copy()
|
|||
|
img = letterbox(img, new_shape=self.img_size)[0]
|
|||
|
img = img[:, :, ::-1].transpose(2, 0, 1)
|
|||
|
img = np.ascontiguousarray(img)
|
|||
|
img = torch.from_numpy(img).to(self.device)
|
|||
|
img = img.half() # 半精度
|
|||
|
img /= 255.0 # 图像归一化
|
|||
|
if img.ndimension() == 3:
|
|||
|
img = img.unsqueeze(0)
|
|||
|
|
|||
|
return img0, img
|
|||
|
|
|||
|
def detect(self, im):
|
|||
|
|
|||
|
im0, img = self.preprocess(im)
|
|||
|
|
|||
|
pred = self.m(img, augment=False)[0]
|
|||
|
pred = pred.float()
|
|||
|
pred = non_max_suppression(pred, self.threshold, 0.4)
|
|||
|
|
|||
|
pred_boxes = []
|
|||
|
for det in pred:
|
|||
|
|
|||
|
if det is not None and len(det):
|
|||
|
det[:, :4] = scale_coords(
|
|||
|
img.shape[2:], det[:, :4], im0.shape).round()
|
|||
|
|
|||
|
for *x, conf, cls_id in det:
|
|||
|
lbl = self.names[int(cls_id)]
|
|||
|
if not lbl in ['person', 'car', 'truck']:
|
|||
|
continue
|
|||
|
x1, y1 = int(x[0]), int(x[1])
|
|||
|
x2, y2 = int(x[2]), int(x[3])
|
|||
|
pred_boxes.append(
|
|||
|
(x1, y1, x2, y2, lbl, conf))
|
|||
|
|
|||
|
return im, pred_boxes
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
调用 self.detect 方法返回图像和预测结果
|
|||
|
|
|||
|
# DeepSort追踪器:
|
|||
|
|
|||
|
```python
|
|||
|
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
|
|||
|
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
|
|||
|
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
|
|||
|
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
|
|||
|
use_cuda=True)
|
|||
|
```
|
|||
|
|
|||
|
调用 self.update 方法更新追踪结果
|
|||
|
|
|||
|
# 运行demo:
|
|||
|
|
|||
|
```bash
|
|||
|
python demo.py
|
|||
|
```
|
|||
|
|
|||
|
# 训练自己的模型:
|
|||
|
参考我的另一篇博客:
|
|||
|
|
|||
|
[【小白CV】手把手教你用YOLOv5训练自己的数据集(从Windows环境配置到模型部署)](https://blog.csdn.net/weixin_44936889/article/details/110661862)
|
|||
|
|
|||
|
训练好后放到 weights 文件夹下
|
|||
|
|
|||
|
# 调用接口:
|
|||
|
|
|||
|
## 创建检测器:
|
|||
|
|
|||
|
```python
|
|||
|
from AIDetector_pytorch import Detector
|
|||
|
|
|||
|
det = Detector()
|
|||
|
```
|
|||
|
|
|||
|
## 调用检测接口:
|
|||
|
|
|||
|
```python
|
|||
|
func_status = {}
|
|||
|
func_status['headpose'] = None
|
|||
|
|
|||
|
result = det.feedCap(im, func_status)
|
|||
|
```
|
|||
|
|
|||
|
其中 im 为 BGR 图像
|
|||
|
|
|||
|
返回的 result 是字典,result['frame'] 返回可视化后的图像
|
|||
|
|
|||
|
# 联系作者:
|
|||
|

|
|||
|
|