Yolov5-deepsort-inference/README.md

153 lines
4.8 KiB
Markdown
Raw Normal View History

2020-12-31 01:16:52 +00:00
本文地址:[https://blog.csdn.net/weixin_44936889/article/details/112002152](https://blog.csdn.net/weixin_44936889/article/details/112002152)
2020-12-31 01:18:26 +00:00
2021-03-06 13:05:47 +00:00
# 注意:
2021-05-31 03:59:51 +00:00
## 本项目使用Yolov5 3.0版本最新版本5.0请移步:
2021-05-25 02:09:35 +00:00
[https://github.com/Sharpiless/yolov5-deepsort](https://github.com/Sharpiless/yolov5-deepsort)
2021-03-06 13:05:47 +00:00
2021-05-31 03:59:51 +00:00
## 注:新版本添加了类别显示功能
2020-12-31 01:16:52 +00:00
# 项目简介:
使用YOLOv5+Deepsort实现车辆行人追踪和计数代码封装成一个Detector类更容易嵌入到自己的项目中。
代码地址欢迎star
[https://github.com/Sharpiless/Yolov5-deepsort-inference](https://github.com/Sharpiless/Yolov5-deepsort-inference)
最终效果:
![在这里插入图片描述](https://img-blog.csdnimg.cn/20201231090541223.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDkzNjg4OQ==,size_16,color_FFFFFF,t_70)
# YOLOv5检测器
```python
class Detector(baseDet):
def __init__(self):
super(Detector, self).__init__()
self.init_model()
self.build_config()
def init_model(self):
self.weights = 'weights/yolov5m.pt'
self.device = '0' if torch.cuda.is_available() else 'cpu'
self.device = select_device(self.device)
model = attempt_load(self.weights, map_location=self.device)
model.to(self.device).eval()
model.half()
# torch.save(model, 'test.pt')
self.m = model
self.names = model.module.names if hasattr(
model, 'module') else model.names
def preprocess(self, img):
img0 = img.copy()
img = letterbox(img, new_shape=self.img_size)[0]
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(self.device)
img = img.half() # 半精度
img /= 255.0 # 图像归一化
if img.ndimension() == 3:
img = img.unsqueeze(0)
return img0, img
def detect(self, im):
im0, img = self.preprocess(im)
pred = self.m(img, augment=False)[0]
pred = pred.float()
pred = non_max_suppression(pred, self.threshold, 0.4)
pred_boxes = []
for det in pred:
if det is not None and len(det):
det[:, :4] = scale_coords(
img.shape[2:], det[:, :4], im0.shape).round()
for *x, conf, cls_id in det:
lbl = self.names[int(cls_id)]
if not lbl in ['person', 'car', 'truck']:
continue
x1, y1 = int(x[0]), int(x[1])
x2, y2 = int(x[2]), int(x[3])
pred_boxes.append(
(x1, y1, x2, y2, lbl, conf))
return im, pred_boxes
```
调用 self.detect 方法返回图像和预测结果
# DeepSort追踪器
```python
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
use_cuda=True)
```
调用 self.update 方法更新追踪结果
# 运行demo
```bash
python demo.py
```
# 训练自己的模型:
参考我的另一篇博客:
[【小白CV】手把手教你用YOLOv5训练自己的数据集从Windows环境配置到模型部署](https://blog.csdn.net/weixin_44936889/article/details/110661862)
训练好后放到 weights 文件夹下
# 调用接口:
## 创建检测器:
```python
from AIDetector_pytorch import Detector
det = Detector()
```
## 调用检测接口:
```python
func_status = {}
func_status['headpose'] = None
result = det.feedCap(im, func_status)
```
其中 im 为 BGR 图像
返回的 result 是字典result['frame'] 返回可视化后的图像
2021-01-28 09:06:53 +00:00
# 关注我的公众号:
2021-01-28 09:07:14 +00:00
2021-01-28 09:06:53 +00:00
感兴趣的同学关注我的公众号——可达鸭的深度学习教程:
2021-01-28 09:07:14 +00:00
2021-01-28 09:06:53 +00:00
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210127153004430.jpg?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDkzNjg4OQ==,size_16,color_FFFFFF,t_70)
2020-12-31 01:16:52 +00:00
# 联系作者:
2021-02-22 03:26:01 +00:00
> B站[https://space.bilibili.com/470550823](https://space.bilibili.com/470550823)
> CSDN[https://blog.csdn.net/weixin_44936889](https://blog.csdn.net/weixin_44936889)
> AI Studio[https://aistudio.baidu.com/aistudio/personalcenter/thirdview/67156](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/67156)
> Github[https://github.com/Sharpiless](https://github.com/Sharpiless)
2020-12-31 01:16:52 +00:00
2021-01-05 13:33:24 +00:00
遵循 GNU General Public License v3.0 协议标明目标检测部分来源https://github.com/ultralytics/yolov5/