InternLM/chat/README_zh-CN.md

52 lines
2.2 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 对话
[English](./README.md) | 简体中文
本文介绍采用 [Transformers](#import-from-transformers)、[ModelScope](#import-from-modelscope)、[Web demos](#dialogue)
对 InternLM2.5-Chat 进行推理。
你还可以进一步了解 InternLM2.5-Chat 采用的[对话格式](./chat_format_zh-CN.md),以及如何[用 LMDeploy 进行推理或部署服务](./lmdeploy_zh-CN.md),或者尝试用 [OpenAOE](./openaoe.md) 与多个模型对话。
## 通过 Transformers 加载
通过以下的代码从 Transformers 加载 InternLM 模型 (可修改模型名称替换不同的模型)
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("internlm/internlm2_5-7b-chat", trust_remote_code=True)
>>> model = AutoModelForCausalLM.from_pretrained("internlm/internlm2_5-7b-chat", trust_remote_code=True).cuda()
>>> model = model.eval()
>>> response, history = model.chat(tokenizer, "你好", history=[])
>>> print(response)
你好有什么我可以帮助你的吗
>>> response, history = model.chat(tokenizer, "请提供三个管理时间的建议。", history=history)
>>> print(response)
```
### 通过 ModelScope 加载
通过以下的代码从 ModelScope 加载 InternLM2.5-Chat 模型 (可修改模型名称替换不同的模型)
```python
from modelscope import snapshot_download, AutoTokenizer, AutoModelForCausalLM
import torch
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm2_5-7b-chat', revision='v1.0.0')
tokenizer = AutoTokenizer.from_pretrained(model_dir, device_map="auto", trust_remote_code=True,torch_dtype=torch.float16)
model = AutoModelForCausalLM.from_pretrained(model_dir,device_map="auto", trust_remote_code=True,torch_dtype=torch.float16)
model = model.eval()
response, history = model.chat(tokenizer, "hello", history=[])
print(response)
response, history = model.chat(tokenizer, "please provide three suggestions about time management", history=history)
print(response)
```
## 通过前端网页对话
可以通过以下代码启动一个前端的界面来与 InternLM2.5 Chat 7B 模型进行交互
```bash
pip install streamlit
pip install transformers>=4.38
streamlit run ./web_demo.py
```