# 对话 [English](./README.md) | 简体中文 本文介绍采用 [Transformers](#import-from-transformers)、[ModelScope](#import-from-modelscope)、[Web demos](#dialogue) 对 InternLM2.5-Chat 进行推理。 你还可以进一步了解 InternLM2.5-Chat 采用的[对话格式](./chat_format_zh-CN.md),以及如何[用 LMDeploy 进行推理或部署服务](./lmdeploy_zh-CN.md),或者尝试用 [OpenAOE](./openaoe.md) 与多个模型对话。 ## 通过 Transformers 加载 通过以下的代码从 Transformers 加载 InternLM 模型 (可修改模型名称替换不同的模型) ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("internlm/internlm2_5-7b-chat", trust_remote_code=True) >>> model = AutoModelForCausalLM.from_pretrained("internlm/internlm2_5-7b-chat", trust_remote_code=True).cuda() >>> model = model.eval() >>> response, history = model.chat(tokenizer, "你好", history=[]) >>> print(response) 你好!有什么我可以帮助你的吗? >>> response, history = model.chat(tokenizer, "请提供三个管理时间的建议。", history=history) >>> print(response) ``` ### 通过 ModelScope 加载 通过以下的代码从 ModelScope 加载 InternLM2.5-Chat 模型 (可修改模型名称替换不同的模型) ```python from modelscope import snapshot_download, AutoTokenizer, AutoModelForCausalLM import torch model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm2_5-7b-chat', revision='v1.0.0') tokenizer = AutoTokenizer.from_pretrained(model_dir, device_map="auto", trust_remote_code=True,torch_dtype=torch.float16) model = AutoModelForCausalLM.from_pretrained(model_dir,device_map="auto", trust_remote_code=True,torch_dtype=torch.float16) model = model.eval() response, history = model.chat(tokenizer, "hello", history=[]) print(response) response, history = model.chat(tokenizer, "please provide three suggestions about time management", history=history) print(response) ``` ## 通过前端网页对话 可以通过以下代码启动一个前端的界面来与 InternLM2.5 Chat 7B 模型进行交互 ```bash pip install streamlit pip install transformers>=4.38 streamlit run ./web_demo.py ```