pull/413/head
li126com 2023-09-28 18:12:50 +08:00
parent 5ab0dc8dc2
commit 45e31b84a7
2 changed files with 180 additions and 524 deletions

View File

@ -1,376 +0,0 @@
import copy
import multiprocessing as mp
import random
import numpy as np
import pytest
import torch
from torch import nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing import assert_close
import internlm
from internlm.core.context.parallel_context import Config
from internlm.core.trainer import Trainer
from internlm.core.scheduler import (
InterleavedPipelineScheduler,
NonPipelineScheduler,
PipelineScheduler,
SchedulerHook,
)
from internlm.data.utils import unpack_data
from internlm.core.scheduler.pipeline_scheduler import get_tensor_shape
from internlm.core.context import global_context as gpc
from internlm.core.context import ParallelMode
from internlm.core.scheduler import SchedulerMetricHook
from internlm.model.metrics import AccPerplex
from internlm.train import (
get_train_data_loader,
get_validation_data_loader,
initialize_llm_profile,
initialize_model,
initialize_optimizer,
load_new_batch,
record_current_batch_training_metrics,
)
from internlm.core.engine import Engine
from internlm.model.loss import FlashGPTLMLoss
from internlm.core.gradient_handler import PipelineSharedModuleGradientHandler
from internlm.core.trainer import TrainState
from internlm.solver.pipeline_utils import partition_uniform
import torch.distributed as dist
class MlpModel(nn.Module):
def __init__(self, start, end, type=None):
super().__init__()
self.part = [start , end]
self.blocks = nn.ModuleList([nn.Linear(8, 8, bias=False) for lid in range(end -start)])
self.type = type
if gpc.is_first_rank(ParallelMode.PIPELINE):
print(f'{gpc.get_global_rank()}: self.part={self.part}', flush=True)
def forward(self, hidden_states=None, cu_seqlens=None, input_ids=None, indexes=None, inference_params=None):
# print(gpc.get_global_rank(), 'hidden_states:', hidden_states, flush=True)
if self.type != 'torch' and not gpc.is_first_rank(ParallelMode.PIPELINE):
input_ids = hidden_states
# print(f'pp stage: {gpc.get_local_rank(ParallelMode.PIPELINE)} MLP {self.part} fwd:', input_ids.shape, flush=True)
# print(gpc.get_global_rank(), 'len_blocsk:', len(self.blocks), flush=True)
# current_device = torch.cuda.current_device()
# print(gpc.get_global_rank(), 'current_device:', current_device, flush=True)
# input_ids = input_ids.to(current_device)
# print(gpc.get_global_rank(), 'mlp_input_data:', input_ids, input_ids.shape, type(input_ids), flush=True)
for i in range(self.part[1] - self.part[0]):
input_ids = self.blocks[i](input_ids)
return input_ids
# x = self.blocks[0](input_ids)
# x = self.blocks[0](x)
# print(gpc.get_global_rank(), 'mlp_output_data:', x, x.shape, flush=True)
# return x
config = Config(
dict(
HIDDEN_SIZE=8,
SEQ_LEN=8,
gradient_handler=[dict(type="PipelineSharedModuleGradientHandler")],
parallel=dict(zero1=1, pipeline=dict(size=8, interleaved_overlap=True), sequence_parallel=False, tensor=1),
model_type="INTERNLM",
data=dict(seq_len=8, micro_num=16, micro_bsz=1, pack_sample_into_one=False, min_length=0, total_steps=9999),
model=dict(
dtype=torch.bfloat16,
num_chunks=2,
hidden_size=8,
use_flash_attn=True,
),
resume_tb_folder="",
tensorboard_folder="",
alert_address=None,
monitor=dict(alert=dict(enable_feishu_alert=False, feishu_alert_address=None, light_monitor_address=None)),
grad_scaler=dict(
fp16=dict(
initial_scale=1,
min_scale=1,
growth_interval=1,
),
growth_factor=1.1,
backoff_factor=0.9,
max_scale=1,
hysteresis=1,
),
adam=dict(
lr=1e-4,
adam_beta1=0.9,
adam_beta2=0.95,
adam_beta2_c=0,
adam_eps=1e-8,
weight_decay=0.01,
),
hybrid_zero_optimizer=dict(
overlap_sync_grad=False,
overlap_sync_param=False,
reduce_bucket_size=512 * 1024 * 1024,
clip_grad_norm=1.0,
),
beta2_scheduler = dict(
init_beta2=0.95,
c=0,
cur_iter=-1,
),
lr_scheduler = dict(
total_steps=100,
init_steps=0, # optimizer_warmup_step
warmup_ratio=0.01,
eta_min=1e-5,
last_epoch=-1,
)
)
)
def build_environment(rank, world_size):
import os
os.environ["RANK"] = str(rank)
os.environ["LOCAL_RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "33333"
torch.cuda.empty_cache()
# launcher="torch"
internlm.launch_from_torch(config=config, seed=1024)
def loose_close(a, b, dtype: torch.dtype = torch.float32):
if dtype is torch.float32:
rtol = 1.3e-6
atol = 1e-5
elif dtype is torch.bfloat16:
rtol = 2e-2
atol = 2e-2
if isinstance(a, torch.Tensor):
a = a.detach().to(dtype)
b = b.detach().to(dtype)
assert_close(a, b, rtol=rtol, atol=atol)
def seed_all(seed, cuda_deterministic=False):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if cuda_deterministic: # slower, more reproducible
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else:
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
def _build_generic_model_1d(num_layers, num_chunks, device=torch.device("cuda"), **kwargs):
"""
build generic model 1d
Args:
num_layers (int): The number of layer.
num_chunks (int): The number of partitions in pipeline parallel.
device (Optional[Union[str, torch.device]]): The device will be used. torch.device("cuda") by default.
"""
pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE)
pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
all_parts = partition_uniform(num_layers, pipeline_size, num_chunks)
parts = all_parts[pipeline_rank]
if gpc.is_rank_for_log():
print(f"The layer sharding is {all_parts}.", flush=True)
models = []
for start, end in parts:
models.append(MlpModel(start, end).cuda())
torch.distributed.barrier()
if len(models) == 1:
model = models[0]
else:
model = nn.ModuleList(models)
return model
class MyLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, logits, labels):
loss = torch.nn.MSELoss(reduction='sum')
print(logits, flush=True)
print(labels, flush=True)
return loss(logits, labels)
def exam_pipeline_parallel(args):
import os
# rank, world_size = args
rank = os.environ["RANK"]
world_size = os.environ["WORLD_SIZE"]
build_environment(rank, world_size)
local_rank = int(os.environ["LOCAL_RANK"])
print('rank_com:', rank, local_rank)
device = torch.device(f"cuda:{local_rank}")
# print('device_id:', device)
# torch.cuda.set_device(device)
seed_all(1024)
dtype=gpc.config.model["dtype"]
# pp_model = copy.deepcopy(torch_model).to(dtype)
pp_model = _build_generic_model_1d(num_layers=16, num_chunks=gpc.config.model.num_chunks)
pp_model = pp_model.to(dtype)
print(gpc.get_global_rank(), 'pp_model', pp_model)
scheduler_hooks = [
SchedulerMetricHook(
skip=True
),
]
micro_num = gpc.config.data.micro_num
seq_len = gpc.config.data.seq_len
gpc.config.NUM_MICRO_BATCHES = micro_num
communication_overlap = gpc.config.parallel["pipeline"].get("interleaved_overlap", False)
print(f'communication_overlap={communication_overlap}')
scheduler = InterleavedPipelineScheduler(
num_microbatches=micro_num,
num_chunks=gpc.config.model.num_chunks,
dtype=gpc.config.model["dtype"],
tensor_shape=get_tensor_shape(),
scatter_gather_tensors=False,
scheduler_hooks=scheduler_hooks,
communication_overlap=communication_overlap,
)
# scheduler = PipelineScheduler(
# data_process_func=None,
# num_microbatches=micro_num,
# dtype=dtype,
# tensor_shape=None,
# scatter_gather_tensors=False,
# scheduler_hooks=scheduler_hooks,
# )
print(f"gpc.config.hybrid_zero_optimizer: {gpc.config.hybrid_zero_optimizer}", flush=True)
# optimizer, beta2_scheduler, lr_scheduler = initialize_optimizer(model=pp_model)
# criterion = FlashGPTLMLoss(parallel_output=False, label_smoothing=0)
# from internlm.solver.optimizer.hybrid_zero_optim import BaseOptimizer
# optimizer = BaseOptimizer(torch.optim.AdamW(
# params=[{"params": pp_model.parameters()}],
# lr=1e-4,
# betas=(0.9, 0.95),
# eps=1e-8,
# ))
optimizer, beta2_scheduler, lr_scheduler = initialize_optimizer(model=pp_model)
engine = Engine(
model=pp_model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
beta2_scheduler=beta2_scheduler,
criterion=MyLoss().to(dtype),
gradient_handlers= [PipelineSharedModuleGradientHandler(model=pp_model, optimizer=optimizer)],
clip_grad_norm=gpc.config.hybrid_zero_optimizer.get("clip_grad_norm", 0.0),
)
scheduler.pre_processing(engine)
engine.train()
# engine.zero_grad()
x_list = []
y_list = []
for _ in range(micro_num):
x_list.append([i for i in range(seq_len)])
y_list.append([i for i in range(seq_len)])
torch_xs = torch.tensor(x_list).to(device).to(torch.float32)
torch_ys = torch.tensor(y_list).to(device).to(torch.float32)
xs = torch.tensor(x_list).to(device).to(dtype)
yx = torch.tensor(y_list).to(device).to(dtype)
# xs.requires_grad_()
# yx.requires_grad_()
print(xs.shape, yx.shape, flush=True)
input_list = [{'input_ids':xs}, yx]
# torch_input = torch.tensor([[0,1,2,3]]).to(device).to(torch.float32)
# torch_label = torch.tensor([[1]]).to(device).to(torch.int64)
# print('label_shape:', input_list[1].shape)
# input_list = [{'input_ids':torch.rand(1, 4).cuda()}, torch.rand(1, 4).cuda()]
# input = input_list[0]
# print(input)
# output = torch_model(input)
# print(output)
print('local_rank:', gpc.get_local_rank(ParallelMode.PIPELINE), 'start schedule', flush=True)
output, label, loss = scheduler.forward_backward_step(engine, input_list, forward_only=False, return_loss=True, return_output_label=True)
print('local_rank:', gpc.get_local_rank(ParallelMode.PIPELINE), 'end schedule', flush=True)
#dist.barrier()
torch.cuda.synchronize()
engine.step()
torch.cuda.synchronize()
if gpc.is_last_rank(ParallelMode.PIPELINE):
print('torch begin')
torch_model = MlpModel(0, 16, 'torch').to(device)
# torch_model = DDP(torch_model, static_graph=True)
print(gpc.get_global_rank(), 'torch_model', torch_model)
torch_optimizer = torch.optim.AdamW(
params=[{"params": torch_model.parameters(), "weight_decay": config.adam.weight_decay}],
lr=config.adam.lr,
betas=(config.adam.adam_beta1, config.adam.adam_beta2),
eps=config.adam.adam_eps,
)
torch_output = torch_model(input_ids=torch_xs)
criterion = MyLoss().to(torch.float32)
torch_loss = criterion(torch_output, torch_ys) / micro_num
torch_loss.backward()
torch_optimizer.step()
print(gpc.get_global_rank(), 'test_torch:', 'torch_output:', torch_output, 'torch_loss:', torch_loss)
print(gpc.get_global_rank(), 'test_pp:', 'output:', output, 'label:', label, 'loss:', loss)
loose_close(torch_output, output, dtype=dtype)
loose_close(torch_loss, loss[0], dtype=dtype)
print(gpc.get_global_rank(), 'assert_ok')
# if rank == 0:
# print('loss:', loss)
# print('torch_loss:', torch_loss)
#loose_close(loss, torch_loss, dtype=dtype)
# torch_loss.backward()
print('local_rank:', gpc.get_local_rank(ParallelMode.PIPELINE), 'everything3')
# def test_pipeline_parallel():
# ctx = mp.get_context("spawn")
# with ctx.Pool(processes=8) as pool:
# pool.map(
# exam_pipeline_parallel,
# [[rank, 8] for rank in range(8)],
# )
# pool.close()
# pool.join()
if __name__ == "__main__":
# pytest.main(["-s", "-q", "test_pipeline.py"])
exam_pipeline_parallel(None)

View File

@ -1,4 +1,3 @@
import copy
import multiprocessing as mp
import random
@ -6,89 +5,66 @@ import numpy as np
import pytest
import torch
from torch import nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing import assert_close
import internlm
from internlm.core.context import ParallelMode
from internlm.core.context import global_context as gpc
from internlm.core.context.parallel_context import Config
from internlm.core.trainer import Trainer
from internlm.core.engine import Engine
from internlm.core.gradient_handler import PipelineSharedModuleGradientHandler
from internlm.core.scheduler import (
InterleavedPipelineScheduler,
NonPipelineScheduler,
PipelineScheduler,
SchedulerHook,
SchedulerMetricHook,
)
from internlm.data.utils import unpack_data
from internlm.core.scheduler.pipeline_scheduler import get_tensor_shape
from internlm.core.context import global_context as gpc
from internlm.core.context import ParallelMode
from internlm.core.scheduler import SchedulerMetricHook
from internlm.model.metrics import AccPerplex
from internlm.train import (
get_train_data_loader,
get_validation_data_loader,
initialize_llm_profile,
initialize_model,
initialize_optimizer,
load_new_batch,
record_current_batch_training_metrics,
)
from internlm.core.engine import Engine
from internlm.model.loss import FlashGPTLMLoss
from internlm.core.gradient_handler import PipelineSharedModuleGradientHandler
from internlm.core.trainer import TrainState
from internlm.solver.pipeline_utils import partition_uniform
from internlm.train import initialize_optimizer
class MlpModel(nn.Module):
"""
Custom model
"""
def __init__(self, start, end, model_type=None):
super().__init__()
self.part = [start, end]
self.blocks = nn.ModuleList([nn.Linear(8, 8, bias=False) for lid in range(end - start)])
self.model_type = model_type
def forward(self, hidden_states=None, input_ids=None):
if self.model_type != "torch" and self.part[0] != 0:
input_ids = hidden_states
for i in range(self.part[1] - self.part[0]):
input_ids = self.blocks[i](input_ids)
return input_ids
class MyLoss(nn.Module):
"""
Custom loss
"""
def __init__(self):
super(MlpModel, self).__init__()
self.linear1 = nn.Linear(4, 8)
self.linear2 = nn.Linear(8, 8)
self.linear3 = nn.Linear(8, 8)
self.linear4 = nn.Linear(8, 8)
self.linear5 = nn.Linear(8, 8)
self.linear6 = nn.Linear(8, 8)
self.linear7 = nn.Linear(8, 8)
self.linear8 = nn.Linear(8, 8)
self.linear9 = nn.Linear(8, 8)
self.linear10 = nn.Linear(8, 8)
self.linear11 = nn.Linear(8, 8)
self.linear12 = nn.Linear(8, 8)
self.linear13 = nn.Linear(8, 8)
self.linear14 = nn.Linear(8, 8)
self.linear15 = nn.Linear(8, 8)
self.linear16 = nn.Linear(8, 4)
super().__init__()
def forward(self, logits, labels):
loss = torch.nn.MSELoss(reduction="sum")
return loss(logits, labels)
def forward(self, hidden_states=None, cu_seqlens=None, input_ids=None, indexes=None, inference_params=None):
print('MLP:', input_ids, input_ids.dtype, flush=True)
input_ids = self.linear1(input_ids)
input_ids = self.linear2(input_ids)
input_ids = self.linear3(input_ids)
input_ids = self.linear4(input_ids)
input_ids = self.linear5(input_ids)
input_ids = self.linear6(input_ids)
input_ids = self.linear7(input_ids)
input_ids = self.linear8(input_ids)
input_ids = self.linear9(input_ids)
input_ids = self.linear10(input_ids)
input_ids = self.linear11(input_ids)
input_ids = self.linear12(input_ids)
input_ids = self.linear13(input_ids)
input_ids = self.linear14(input_ids)
input_ids = self.linear15(input_ids)
input_ids = self.linear16(input_ids)
return input_ids
config = Config(
dict(
HIDDEN_SIZE=4,
gradient_handler=[dict(type="PipelineSharedModuleGradientHandler")],
parallel=dict(zero1=1, pipeline=dict(size=8, interleaved_overlap=False), sequence_parallel=False, tensor=1),
model_type="INTERNLM",
data=dict(seq_len=4, micro_num=4, micro_bsz=1, pack_sample_into_one=False, min_length=0, total_steps=9999),
data=dict(seq_len=8, micro_num=16, micro_bsz=1, pack_sample_into_one=False, min_length=0, total_steps=9999),
model=dict(
dtype=torch.bfloat16,
num_chunks=2,
use_flash_attn=True,
),
resume_tb_folder="",
tensorboard_folder="",
@ -119,18 +95,18 @@ config = Config(
reduce_bucket_size=512 * 1024 * 1024,
clip_grad_norm=1.0,
),
beta2_scheduler = dict(
beta2_scheduler=dict(
init_beta2=0.95,
c=0,
cur_iter=-1,
),
lr_scheduler = dict(
lr_scheduler=dict(
total_steps=100,
init_steps=0, # optimizer_warmup_step
init_steps=0,
warmup_ratio=0.01,
eta_min=1e-5,
last_epoch=-1,
)
),
)
)
@ -142,7 +118,7 @@ def build_environment(rank, world_size):
os.environ["LOCAL_RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "44444"
os.environ["MASTER_PORT"] = "33333"
torch.cuda.empty_cache()
# launcher="torch"
internlm.launch_from_torch(config=config, seed=1024)
@ -163,6 +139,7 @@ def loose_close(a, b, dtype: torch.dtype = torch.float32):
assert_close(a, b, rtol=rtol, atol=atol)
def seed_all(seed, cuda_deterministic=False):
random.seed(seed)
np.random.seed(seed)
@ -178,109 +155,164 @@ def seed_all(seed, cuda_deterministic=False):
torch.backends.cudnn.benchmark = True
def _build_generic_model_1d(num_layers, num_chunks):
pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE)
pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
all_parts = partition_uniform(num_layers, pipeline_size, num_chunks)
parts = all_parts[pipeline_rank]
if gpc.is_rank_for_log():
print(f"The layer sharding is {all_parts}.", flush=True)
models = []
for start, end in parts:
models.append(MlpModel(start, end).cuda())
torch.distributed.barrier()
if len(models) == 1:
model = models[0]
else:
model = nn.ModuleList(models)
return model
def exam_pipeline_parallel(args):
import os
rank, world_size = args
dtype = torch.float32
build_environment(rank, world_size)
local_rank = int(os.environ["LOCAL_RANK"])
print('rank_com:', rank, local_rank)
device = torch.device(f"cuda:{local_rank}")
# print('device_id:', device)
# torch.cuda.set_device(device)
seed_all(1024)
torch_model = MlpModel().to(device)
pp_model = copy.deepcopy(torch_model).to(dtype)
tensor_shape = get_tensor_shape()
tensor_shape = (
4,
4,
)
# print('tensor_shape:', tensor_shape)
scatter_gather = gpc.is_initialized(ParallelMode.TENSOR)
if gpc.is_first_rank(ParallelMode.PIPELINE):
print(rank, 'is first pp')
# init
rank, world_size, micro_num, num_chunks, interleaved_overlap = args
config.data.micro_num = micro_num
config.model.num_chunks = num_chunks
config.parallel.pipeline.interleaved_overlap = interleaved_overlap
build_environment(rank, world_size)
device = torch.device(f"cuda:{rank}")
dtype = config.model["dtype"]
# set seed
seed_all(1024)
# pp model
pp_model = _build_generic_model_1d(num_layers=32, num_chunks=num_chunks)
pp_model = pp_model.to(dtype)
# pp scheduler
scheduler_hooks = [
SchedulerMetricHook(
skip=False
),
SchedulerMetricHook(skip=True),
]
gpc.config.NUM_MICRO_BATCHES = gpc.config.data.micro_num
scheduler = PipelineScheduler(
data_process_func=None,
num_microbatches=gpc.config.data.micro_num,
dtype=gpc.config.model["dtype"],
tensor_shape=tensor_shape,
scatter_gather_tensors=scatter_gather,
scheduler_hooks=scheduler_hooks,
)
seq_len = gpc.config.data.seq_len
gpc.config.NUM_MICRO_BATCHES = micro_num
communication_overlap = interleaved_overlap
if num_chunks == 1:
# noninterleaved pp
scheduler = PipelineScheduler(
data_process_func=None,
num_microbatches=micro_num,
dtype=dtype,
tensor_shape=[1, 8],
scatter_gather_tensors=False,
scheduler_hooks=scheduler_hooks,
)
else:
# interleaved pp
if micro_num < gpc.get_world_size(ParallelMode.PIPELINE):
try:
scheduler = InterleavedPipelineScheduler(
num_microbatches=micro_num,
num_chunks=gpc.config.model.num_chunks,
dtype=dtype,
tensor_shape=[1, 8],
scatter_gather_tensors=False,
scheduler_hooks=scheduler_hooks,
communication_overlap=communication_overlap,
)
except AssertionError:
return
else:
raise RuntimeError("Error: AssertionError should occur when micro_num < Pipeline parrallel world size")
else:
scheduler = InterleavedPipelineScheduler(
num_microbatches=micro_num,
num_chunks=gpc.config.model.num_chunks,
dtype=dtype,
tensor_shape=[1, 8],
scatter_gather_tensors=False,
scheduler_hooks=scheduler_hooks,
communication_overlap=communication_overlap,
)
# pp optimizer and engine
optimizer, beta2_scheduler, lr_scheduler = initialize_optimizer(model=pp_model)
criterion = FlashGPTLMLoss(parallel_output=True, label_smoothing=0)
engine = Engine(
model=pp_model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
beta2_scheduler=beta2_scheduler,
criterion=criterion,
gradient_handlers= [dict(type="PipelineSharedModuleGradientHandler")],
criterion=MyLoss().to(dtype),
gradient_handlers=[PipelineSharedModuleGradientHandler(model=pp_model, optimizer=optimizer)],
clip_grad_norm=gpc.config.hybrid_zero_optimizer.get("clip_grad_norm", 0.0),
)
scheduler.pre_processing(engine)
engine.train()
engine.zero_grad()
input_list = [{'input_ids':torch.tensor([[0,1,2,3],[0,1,2,3],[0,1,2,3],[0,1,2,3]]).to(device).to(dtype)},
torch.tensor([[1],[1],[1],[1]]).to(device).to(torch.int64)]
torch_input = torch.tensor([[0,1,2,3]]).to(device).to(torch.float32)
torch_label = torch.tensor([[1]]).to(device).to(torch.int64)
# print('label_shape:', input_list[1].shape)
# input_list = [{'input_ids':torch.rand(1, 4).cuda()}, torch.rand(1, 4).cuda()]
# input = input_list[0]
# print(input)
# output = torch_model(input)
# print(output)
print('local_rank:', gpc.get_local_rank(ParallelMode.PIPELINE), 'start schedule')
_, _, loss = scheduler.forward_backward_step(engine, input_list, forward_only=False, return_loss=True, return_output_label=False)
# create input
x_list = []
y_list = []
for _ in range(micro_num):
x_list.append(list(range(seq_len)))
y_list.append(list(range(seq_len)))
xs = torch.tensor(x_list).to(device).to(dtype)
yx = torch.tensor(y_list).to(device).to(dtype)
input_list = [{"input_ids": xs}, yx]
# pp forward and backward
output, _, loss = scheduler.forward_backward_step(
engine, input_list, forward_only=False, return_loss=True, return_output_label=True
)
engine.step()
print('local_rank:', gpc.get_local_rank(ParallelMode.PIPELINE), 'end schedule')
torch_output = torch_model(input_ids=torch_input)
torch_loss = criterion(torch_output, torch_label).unsqueeze(0)
# if rank == 0:
# print('loss:', loss)
# print('torch_loss:', torch_loss)
#loose_close(loss, torch_loss, dtype=dtype)
torch_loss.backward()
print('local_rank:', gpc.get_local_rank(ParallelMode.PIPELINE), 'everything3')
# torch related
if gpc.is_last_rank(ParallelMode.PIPELINE):
torch_xs = torch.tensor(x_list).to(device).to(torch.float32)
torch_ys = torch.tensor(y_list).to(device).to(torch.float32)
torch_model = MlpModel(0, 32, "torch").to(device)
torch_optimizer = torch.optim.AdamW(
params=[{"params": torch_model.parameters(), "weight_decay": config.adam.weight_decay}],
lr=config.adam.lr,
betas=(config.adam.adam_beta1, config.adam.adam_beta2),
eps=config.adam.adam_eps,
)
# check output
torch_output = torch_model(input_ids=torch_xs) # pylint: disable=E1102
loose_close(torch_output, output, dtype=dtype)
torch_criterion = MyLoss().to(torch.float32)
torch_loss = torch_criterion(torch_output, torch_ys) / micro_num # pylint: disable=E1102
torch_loss.backward()
torch_optimizer.step()
# check loss
loose_close(torch_loss, loss[0], dtype=dtype)
def test_pipeline_parallel():
@pytest.mark.parametrize("micro_num", [4, 8, 16])
@pytest.mark.parametrize("num_chunks", [1, 2, 4])
@pytest.mark.parametrize("interleaved_overlap", [True, False])
def test_pipeline_parallel(micro_num, num_chunks, interleaved_overlap):
ctx = mp.get_context("spawn")
with ctx.Pool(processes=8) as pool:
pool.map(
exam_pipeline_parallel,
[[rank, 8] for rank in range(8)],
[[rank, 8, micro_num, num_chunks, interleaved_overlap] for rank in range(8)],
)
pool.close()
pool.join()
if __name__ == "__main__":
pytest.main(["-s", "-q", "test_pipeline.py"])
pytest.main(["-s", "-q", "test_pipeline.py"])