pull/413/head
li126com 2023-09-27 21:19:05 +08:00
parent 69ff9f2f5c
commit 5ab0dc8dc2
1 changed files with 72 additions and 27 deletions

View File

@ -45,35 +45,46 @@ import torch.distributed as dist
class MlpModel(nn.Module):
def __init__(self, start, end):
def __init__(self, start, end, type=None):
super().__init__()
self.part = [start , end]
self.blocks = nn.ModuleList([nn.Linear(8, 8, bias=False) for lid in range(end -start)])
self.type = type
if gpc.is_first_rank(ParallelMode.PIPELINE):
print(f'{gpc.get_global_rank()}: self.part={self.part}', flush=True)
def forward(self, hidden_states=None, cu_seqlens=None, input_ids=None, indexes=None, inference_params=None):
print(gpc.get_global_rank(), 'hidden_states:', hidden_states, flush=True)
if self.part[0] != 0:
# print(gpc.get_global_rank(), 'hidden_states:', hidden_states, flush=True)
if self.type != 'torch' and not gpc.is_first_rank(ParallelMode.PIPELINE):
input_ids = hidden_states
print(f'pp stage: {gpc.get_local_rank(ParallelMode.PIPELINE)} MLP {self.part} fwd:', input_ids.shape, flush=True)
print(gpc.get_global_rank(), 'len_blocsk:', len(self.blocks), flush=True)
current_device = torch.cuda.current_device()
print(gpc.get_global_rank(), 'current_device:', current_device, flush=True)
input_ids = input_ids.to(current_device)
print(gpc.get_global_rank(), 'mlp_input_data:', input_ids, input_ids.shape, type(input_ids), flush=True)
x = self.blocks[0](input_ids) + self.blocks[1](input_ids)
print(gpc.get_global_rank(), 'mlp_output_data:', x, x.shape, flush=True)
return x
# print(f'pp stage: {gpc.get_local_rank(ParallelMode.PIPELINE)} MLP {self.part} fwd:', input_ids.shape, flush=True)
# print(gpc.get_global_rank(), 'len_blocsk:', len(self.blocks), flush=True)
# current_device = torch.cuda.current_device()
# print(gpc.get_global_rank(), 'current_device:', current_device, flush=True)
# input_ids = input_ids.to(current_device)
# print(gpc.get_global_rank(), 'mlp_input_data:', input_ids, input_ids.shape, type(input_ids), flush=True)
for i in range(self.part[1] - self.part[0]):
input_ids = self.blocks[i](input_ids)
return input_ids
# x = self.blocks[0](input_ids)
# x = self.blocks[0](x)
# print(gpc.get_global_rank(), 'mlp_output_data:', x, x.shape, flush=True)
# return x
config = Config(
dict(
HIDDEN_SIZE=8,
SEQ_LEN=8,
gradient_handler=[dict(type="PipelineSharedModuleGradientHandler")],
HIDDEN_SIZE=4,
parallel=dict(zero1=1, pipeline=dict(size=8, interleaved_overlap=False), sequence_parallel=False, tensor=1),
parallel=dict(zero1=1, pipeline=dict(size=8, interleaved_overlap=True), sequence_parallel=False, tensor=1),
model_type="INTERNLM",
data=dict(seq_len=8, micro_num=16, micro_bsz=1, pack_sample_into_one=False, min_length=0, total_steps=9999),
model=dict(
dtype=torch.bfloat16,
num_chunks=2,
hidden_size=8,
use_flash_attn=True,
),
resume_tb_folder="",
tensorboard_folder="",
@ -220,11 +231,12 @@ def exam_pipeline_parallel(args):
seed_all(1024)
dtype=gpc.config.model["dtype"]
# torch_model = MlpModel().to(device)
# pp_model = copy.deepcopy(torch_model).to(dtype)
pp_model = _build_generic_model_1d(num_layers=16, num_chunks=1)
pp_model = _build_generic_model_1d(num_layers=16, num_chunks=gpc.config.model.num_chunks)
pp_model = pp_model.to(dtype)
print(pp_model, flush=True)
print(gpc.get_global_rank(), 'pp_model', pp_model)
scheduler_hooks = [
SchedulerMetricHook(
@ -235,14 +247,26 @@ def exam_pipeline_parallel(args):
micro_num = gpc.config.data.micro_num
seq_len = gpc.config.data.seq_len
gpc.config.NUM_MICRO_BATCHES = micro_num
scheduler = PipelineScheduler(
data_process_func=None,
communication_overlap = gpc.config.parallel["pipeline"].get("interleaved_overlap", False)
print(f'communication_overlap={communication_overlap}')
scheduler = InterleavedPipelineScheduler(
num_microbatches=micro_num,
num_chunks=gpc.config.model.num_chunks,
dtype=gpc.config.model["dtype"],
tensor_shape=None,
tensor_shape=get_tensor_shape(),
scatter_gather_tensors=False,
scheduler_hooks=scheduler_hooks,
communication_overlap=communication_overlap,
)
# scheduler = PipelineScheduler(
# data_process_func=None,
# num_microbatches=micro_num,
# dtype=dtype,
# tensor_shape=None,
# scatter_gather_tensors=False,
# scheduler_hooks=scheduler_hooks,
# )
print(f"gpc.config.hybrid_zero_optimizer: {gpc.config.hybrid_zero_optimizer}", flush=True)
# optimizer, beta2_scheduler, lr_scheduler = initialize_optimizer(model=pp_model)
@ -256,7 +280,6 @@ def exam_pipeline_parallel(args):
# eps=1e-8,
# ))
optimizer, beta2_scheduler, lr_scheduler = initialize_optimizer(model=pp_model)
criterion = FlashGPTLMLoss(parallel_output=True, label_smoothing=0)
engine = Engine(
model=pp_model,
@ -277,10 +300,12 @@ def exam_pipeline_parallel(args):
for _ in range(micro_num):
x_list.append([i for i in range(seq_len)])
y_list.append([i for i in range(seq_len)])
torch_xs = torch.tensor(x_list).to(device).to(torch.float32)
torch_ys = torch.tensor(y_list).to(device).to(torch.float32)
xs = torch.tensor(x_list).to(device).to(dtype)
yx = torch.tensor(y_list).to(device).to(dtype)
xs.requires_grad_()
yx.requires_grad_()
# xs.requires_grad_()
# yx.requires_grad_()
print(xs.shape, yx.shape, flush=True)
input_list = [{'input_ids':xs}, yx]
@ -293,15 +318,35 @@ def exam_pipeline_parallel(args):
# output = torch_model(input)
# print(output)
print('local_rank:', gpc.get_local_rank(ParallelMode.PIPELINE), 'start schedule', flush=True)
_, _, loss = scheduler.forward_backward_step(engine, input_list, forward_only=False, return_loss=True, return_output_label=False)
output, label, loss = scheduler.forward_backward_step(engine, input_list, forward_only=False, return_loss=True, return_output_label=True)
print('local_rank:', gpc.get_local_rank(ParallelMode.PIPELINE), 'end schedule', flush=True)
dist.barrier()
#dist.barrier()
torch.cuda.synchronize()
engine.step()
torch.cuda.synchronize()
# torch_output = torch_model(input_ids=torch_input)
# torch_loss = criterion(torch_output, torch_label).unsqueeze(0)
if gpc.is_last_rank(ParallelMode.PIPELINE):
print('torch begin')
torch_model = MlpModel(0, 16, 'torch').to(device)
# torch_model = DDP(torch_model, static_graph=True)
print(gpc.get_global_rank(), 'torch_model', torch_model)
torch_optimizer = torch.optim.AdamW(
params=[{"params": torch_model.parameters(), "weight_decay": config.adam.weight_decay}],
lr=config.adam.lr,
betas=(config.adam.adam_beta1, config.adam.adam_beta2),
eps=config.adam.adam_eps,
)
torch_output = torch_model(input_ids=torch_xs)
criterion = MyLoss().to(torch.float32)
torch_loss = criterion(torch_output, torch_ys) / micro_num
torch_loss.backward()
torch_optimizer.step()
print(gpc.get_global_rank(), 'test_torch:', 'torch_output:', torch_output, 'torch_loss:', torch_loss)
print(gpc.get_global_rank(), 'test_pp:', 'output:', output, 'label:', label, 'loss:', loss)
loose_close(torch_output, output, dtype=dtype)
loose_close(torch_loss, loss[0], dtype=dtype)
print(gpc.get_global_rank(), 'assert_ok')
# if rank == 0:
# print('loss:', loss)