mirror of https://github.com/InternLM/InternLM
377 lines
13 KiB
Python
377 lines
13 KiB
Python
import copy
|
|
import multiprocessing as mp
|
|
import random
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.testing import assert_close
|
|
|
|
import internlm
|
|
from internlm.core.context.parallel_context import Config
|
|
from internlm.core.trainer import Trainer
|
|
|
|
from internlm.core.scheduler import (
|
|
InterleavedPipelineScheduler,
|
|
NonPipelineScheduler,
|
|
PipelineScheduler,
|
|
SchedulerHook,
|
|
)
|
|
from internlm.data.utils import unpack_data
|
|
from internlm.core.scheduler.pipeline_scheduler import get_tensor_shape
|
|
from internlm.core.context import global_context as gpc
|
|
from internlm.core.context import ParallelMode
|
|
from internlm.core.scheduler import SchedulerMetricHook
|
|
from internlm.model.metrics import AccPerplex
|
|
from internlm.train import (
|
|
get_train_data_loader,
|
|
get_validation_data_loader,
|
|
initialize_llm_profile,
|
|
initialize_model,
|
|
initialize_optimizer,
|
|
load_new_batch,
|
|
record_current_batch_training_metrics,
|
|
)
|
|
from internlm.core.engine import Engine
|
|
from internlm.model.loss import FlashGPTLMLoss
|
|
from internlm.core.gradient_handler import PipelineSharedModuleGradientHandler
|
|
from internlm.core.trainer import TrainState
|
|
from internlm.solver.pipeline_utils import partition_uniform
|
|
|
|
|
|
import torch.distributed as dist
|
|
|
|
class MlpModel(nn.Module):
|
|
|
|
def __init__(self, start, end, type=None):
|
|
super().__init__()
|
|
self.part = [start , end]
|
|
self.blocks = nn.ModuleList([nn.Linear(8, 8, bias=False) for lid in range(end -start)])
|
|
self.type = type
|
|
if gpc.is_first_rank(ParallelMode.PIPELINE):
|
|
print(f'{gpc.get_global_rank()}: self.part={self.part}', flush=True)
|
|
|
|
def forward(self, hidden_states=None, cu_seqlens=None, input_ids=None, indexes=None, inference_params=None):
|
|
# print(gpc.get_global_rank(), 'hidden_states:', hidden_states, flush=True)
|
|
if self.type != 'torch' and not gpc.is_first_rank(ParallelMode.PIPELINE):
|
|
input_ids = hidden_states
|
|
|
|
# print(f'pp stage: {gpc.get_local_rank(ParallelMode.PIPELINE)} MLP {self.part} fwd:', input_ids.shape, flush=True)
|
|
# print(gpc.get_global_rank(), 'len_blocsk:', len(self.blocks), flush=True)
|
|
# current_device = torch.cuda.current_device()
|
|
# print(gpc.get_global_rank(), 'current_device:', current_device, flush=True)
|
|
# input_ids = input_ids.to(current_device)
|
|
# print(gpc.get_global_rank(), 'mlp_input_data:', input_ids, input_ids.shape, type(input_ids), flush=True)
|
|
for i in range(self.part[1] - self.part[0]):
|
|
input_ids = self.blocks[i](input_ids)
|
|
return input_ids
|
|
# x = self.blocks[0](input_ids)
|
|
# x = self.blocks[0](x)
|
|
# print(gpc.get_global_rank(), 'mlp_output_data:', x, x.shape, flush=True)
|
|
# return x
|
|
|
|
config = Config(
|
|
dict(
|
|
HIDDEN_SIZE=8,
|
|
SEQ_LEN=8,
|
|
gradient_handler=[dict(type="PipelineSharedModuleGradientHandler")],
|
|
parallel=dict(zero1=1, pipeline=dict(size=8, interleaved_overlap=True), sequence_parallel=False, tensor=1),
|
|
model_type="INTERNLM",
|
|
data=dict(seq_len=8, micro_num=16, micro_bsz=1, pack_sample_into_one=False, min_length=0, total_steps=9999),
|
|
model=dict(
|
|
dtype=torch.bfloat16,
|
|
num_chunks=2,
|
|
hidden_size=8,
|
|
use_flash_attn=True,
|
|
),
|
|
resume_tb_folder="",
|
|
tensorboard_folder="",
|
|
alert_address=None,
|
|
monitor=dict(alert=dict(enable_feishu_alert=False, feishu_alert_address=None, light_monitor_address=None)),
|
|
grad_scaler=dict(
|
|
fp16=dict(
|
|
initial_scale=1,
|
|
min_scale=1,
|
|
growth_interval=1,
|
|
),
|
|
growth_factor=1.1,
|
|
backoff_factor=0.9,
|
|
max_scale=1,
|
|
hysteresis=1,
|
|
),
|
|
adam=dict(
|
|
lr=1e-4,
|
|
adam_beta1=0.9,
|
|
adam_beta2=0.95,
|
|
adam_beta2_c=0,
|
|
adam_eps=1e-8,
|
|
weight_decay=0.01,
|
|
),
|
|
hybrid_zero_optimizer=dict(
|
|
overlap_sync_grad=False,
|
|
overlap_sync_param=False,
|
|
reduce_bucket_size=512 * 1024 * 1024,
|
|
clip_grad_norm=1.0,
|
|
),
|
|
beta2_scheduler = dict(
|
|
init_beta2=0.95,
|
|
c=0,
|
|
cur_iter=-1,
|
|
),
|
|
lr_scheduler = dict(
|
|
total_steps=100,
|
|
init_steps=0, # optimizer_warmup_step
|
|
warmup_ratio=0.01,
|
|
eta_min=1e-5,
|
|
last_epoch=-1,
|
|
)
|
|
)
|
|
)
|
|
|
|
|
|
def build_environment(rank, world_size):
|
|
import os
|
|
|
|
os.environ["RANK"] = str(rank)
|
|
os.environ["LOCAL_RANK"] = str(rank)
|
|
os.environ["WORLD_SIZE"] = str(world_size)
|
|
os.environ["MASTER_ADDR"] = "127.0.0.1"
|
|
os.environ["MASTER_PORT"] = "33333"
|
|
torch.cuda.empty_cache()
|
|
# launcher="torch"
|
|
internlm.launch_from_torch(config=config, seed=1024)
|
|
|
|
|
|
def loose_close(a, b, dtype: torch.dtype = torch.float32):
|
|
|
|
if dtype is torch.float32:
|
|
rtol = 1.3e-6
|
|
atol = 1e-5
|
|
elif dtype is torch.bfloat16:
|
|
rtol = 2e-2
|
|
atol = 2e-2
|
|
|
|
if isinstance(a, torch.Tensor):
|
|
a = a.detach().to(dtype)
|
|
b = b.detach().to(dtype)
|
|
|
|
assert_close(a, b, rtol=rtol, atol=atol)
|
|
|
|
def seed_all(seed, cuda_deterministic=False):
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
if cuda_deterministic: # slower, more reproducible
|
|
torch.backends.cudnn.deterministic = True
|
|
torch.backends.cudnn.benchmark = False
|
|
else:
|
|
torch.backends.cudnn.deterministic = False
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
|
|
|
|
def _build_generic_model_1d(num_layers, num_chunks, device=torch.device("cuda"), **kwargs):
|
|
"""
|
|
build generic model 1d
|
|
|
|
Args:
|
|
num_layers (int): The number of layer.
|
|
num_chunks (int): The number of partitions in pipeline parallel.
|
|
device (Optional[Union[str, torch.device]]): The device will be used. torch.device("cuda") by default.
|
|
|
|
"""
|
|
pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE)
|
|
pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
|
|
|
|
all_parts = partition_uniform(num_layers, pipeline_size, num_chunks)
|
|
parts = all_parts[pipeline_rank]
|
|
if gpc.is_rank_for_log():
|
|
print(f"The layer sharding is {all_parts}.", flush=True)
|
|
|
|
models = []
|
|
for start, end in parts:
|
|
models.append(MlpModel(start, end).cuda())
|
|
torch.distributed.barrier()
|
|
if len(models) == 1:
|
|
model = models[0]
|
|
else:
|
|
model = nn.ModuleList(models)
|
|
|
|
return model
|
|
|
|
|
|
class MyLoss(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, logits, labels):
|
|
loss = torch.nn.MSELoss(reduction='sum')
|
|
print(logits, flush=True)
|
|
print(labels, flush=True)
|
|
return loss(logits, labels)
|
|
|
|
def exam_pipeline_parallel(args):
|
|
import os
|
|
# rank, world_size = args
|
|
|
|
rank = os.environ["RANK"]
|
|
world_size = os.environ["WORLD_SIZE"]
|
|
|
|
build_environment(rank, world_size)
|
|
local_rank = int(os.environ["LOCAL_RANK"])
|
|
print('rank_com:', rank, local_rank)
|
|
device = torch.device(f"cuda:{local_rank}")
|
|
# print('device_id:', device)
|
|
# torch.cuda.set_device(device)
|
|
seed_all(1024)
|
|
dtype=gpc.config.model["dtype"]
|
|
|
|
|
|
# pp_model = copy.deepcopy(torch_model).to(dtype)
|
|
pp_model = _build_generic_model_1d(num_layers=16, num_chunks=gpc.config.model.num_chunks)
|
|
pp_model = pp_model.to(dtype)
|
|
print(gpc.get_global_rank(), 'pp_model', pp_model)
|
|
|
|
|
|
scheduler_hooks = [
|
|
SchedulerMetricHook(
|
|
skip=True
|
|
),
|
|
]
|
|
|
|
micro_num = gpc.config.data.micro_num
|
|
seq_len = gpc.config.data.seq_len
|
|
gpc.config.NUM_MICRO_BATCHES = micro_num
|
|
|
|
communication_overlap = gpc.config.parallel["pipeline"].get("interleaved_overlap", False)
|
|
print(f'communication_overlap={communication_overlap}')
|
|
scheduler = InterleavedPipelineScheduler(
|
|
num_microbatches=micro_num,
|
|
num_chunks=gpc.config.model.num_chunks,
|
|
dtype=gpc.config.model["dtype"],
|
|
tensor_shape=get_tensor_shape(),
|
|
scatter_gather_tensors=False,
|
|
scheduler_hooks=scheduler_hooks,
|
|
communication_overlap=communication_overlap,
|
|
)
|
|
# scheduler = PipelineScheduler(
|
|
# data_process_func=None,
|
|
# num_microbatches=micro_num,
|
|
# dtype=dtype,
|
|
# tensor_shape=None,
|
|
# scatter_gather_tensors=False,
|
|
# scheduler_hooks=scheduler_hooks,
|
|
# )
|
|
|
|
print(f"gpc.config.hybrid_zero_optimizer: {gpc.config.hybrid_zero_optimizer}", flush=True)
|
|
# optimizer, beta2_scheduler, lr_scheduler = initialize_optimizer(model=pp_model)
|
|
# criterion = FlashGPTLMLoss(parallel_output=False, label_smoothing=0)
|
|
|
|
# from internlm.solver.optimizer.hybrid_zero_optim import BaseOptimizer
|
|
# optimizer = BaseOptimizer(torch.optim.AdamW(
|
|
# params=[{"params": pp_model.parameters()}],
|
|
# lr=1e-4,
|
|
# betas=(0.9, 0.95),
|
|
# eps=1e-8,
|
|
# ))
|
|
optimizer, beta2_scheduler, lr_scheduler = initialize_optimizer(model=pp_model)
|
|
|
|
engine = Engine(
|
|
model=pp_model,
|
|
optimizer=optimizer,
|
|
lr_scheduler=lr_scheduler,
|
|
beta2_scheduler=beta2_scheduler,
|
|
criterion=MyLoss().to(dtype),
|
|
gradient_handlers= [PipelineSharedModuleGradientHandler(model=pp_model, optimizer=optimizer)],
|
|
clip_grad_norm=gpc.config.hybrid_zero_optimizer.get("clip_grad_norm", 0.0),
|
|
)
|
|
|
|
scheduler.pre_processing(engine)
|
|
engine.train()
|
|
# engine.zero_grad()
|
|
|
|
x_list = []
|
|
y_list = []
|
|
for _ in range(micro_num):
|
|
x_list.append([i for i in range(seq_len)])
|
|
y_list.append([i for i in range(seq_len)])
|
|
torch_xs = torch.tensor(x_list).to(device).to(torch.float32)
|
|
torch_ys = torch.tensor(y_list).to(device).to(torch.float32)
|
|
xs = torch.tensor(x_list).to(device).to(dtype)
|
|
yx = torch.tensor(y_list).to(device).to(dtype)
|
|
# xs.requires_grad_()
|
|
# yx.requires_grad_()
|
|
print(xs.shape, yx.shape, flush=True)
|
|
input_list = [{'input_ids':xs}, yx]
|
|
|
|
# torch_input = torch.tensor([[0,1,2,3]]).to(device).to(torch.float32)
|
|
# torch_label = torch.tensor([[1]]).to(device).to(torch.int64)
|
|
# print('label_shape:', input_list[1].shape)
|
|
# input_list = [{'input_ids':torch.rand(1, 4).cuda()}, torch.rand(1, 4).cuda()]
|
|
# input = input_list[0]
|
|
# print(input)
|
|
# output = torch_model(input)
|
|
# print(output)
|
|
print('local_rank:', gpc.get_local_rank(ParallelMode.PIPELINE), 'start schedule', flush=True)
|
|
output, label, loss = scheduler.forward_backward_step(engine, input_list, forward_only=False, return_loss=True, return_output_label=True)
|
|
print('local_rank:', gpc.get_local_rank(ParallelMode.PIPELINE), 'end schedule', flush=True)
|
|
|
|
#dist.barrier()
|
|
torch.cuda.synchronize()
|
|
engine.step()
|
|
torch.cuda.synchronize()
|
|
|
|
if gpc.is_last_rank(ParallelMode.PIPELINE):
|
|
print('torch begin')
|
|
torch_model = MlpModel(0, 16, 'torch').to(device)
|
|
# torch_model = DDP(torch_model, static_graph=True)
|
|
print(gpc.get_global_rank(), 'torch_model', torch_model)
|
|
torch_optimizer = torch.optim.AdamW(
|
|
params=[{"params": torch_model.parameters(), "weight_decay": config.adam.weight_decay}],
|
|
lr=config.adam.lr,
|
|
betas=(config.adam.adam_beta1, config.adam.adam_beta2),
|
|
eps=config.adam.adam_eps,
|
|
)
|
|
torch_output = torch_model(input_ids=torch_xs)
|
|
criterion = MyLoss().to(torch.float32)
|
|
torch_loss = criterion(torch_output, torch_ys) / micro_num
|
|
torch_loss.backward()
|
|
torch_optimizer.step()
|
|
print(gpc.get_global_rank(), 'test_torch:', 'torch_output:', torch_output, 'torch_loss:', torch_loss)
|
|
print(gpc.get_global_rank(), 'test_pp:', 'output:', output, 'label:', label, 'loss:', loss)
|
|
loose_close(torch_output, output, dtype=dtype)
|
|
loose_close(torch_loss, loss[0], dtype=dtype)
|
|
print(gpc.get_global_rank(), 'assert_ok')
|
|
|
|
# if rank == 0:
|
|
# print('loss:', loss)
|
|
# print('torch_loss:', torch_loss)
|
|
#loose_close(loss, torch_loss, dtype=dtype)
|
|
# torch_loss.backward()
|
|
print('local_rank:', gpc.get_local_rank(ParallelMode.PIPELINE), 'everything3')
|
|
|
|
|
|
|
|
|
|
|
|
# def test_pipeline_parallel():
|
|
# ctx = mp.get_context("spawn")
|
|
# with ctx.Pool(processes=8) as pool:
|
|
# pool.map(
|
|
# exam_pipeline_parallel,
|
|
# [[rank, 8] for rank in range(8)],
|
|
# )
|
|
# pool.close()
|
|
|
|
# pool.join()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# pytest.main(["-s", "-q", "test_pipeline.py"])
|
|
exam_pipeline_parallel(None)
|