Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
flybird11111 ed888183ec
[fix]downgrade colossalai (#4840)
1 year ago
.github [devops] fix concurrency group (#4667) 1 year ago
applications [fix]downgrade colossalai (#4840) 1 year ago
colossalai [kernel] update triton init #4740 (#4740) 1 year ago
docker Update Dockerfile (#4499) 1 year ago
docs [doc] explaination of loading large pretrained models (#4741) 1 year ago
examples [example] llama2 add fine-tune example (#4673) 1 year ago
inference@56b35f3c06 Automated submodule synchronization (#3062) 2 years ago
op_builder [Fix] Fix compile error (#4357) 1 year ago
requirements [shardformer] update llama2/opt finetune example and fix llama2 policy (#4645) 1 year ago
tests [legacy] remove deterministic data loader test 1 year ago
.clang-format [revert] recover "[refactor] restructure configuration files (#2977)" (#3022) 2 years ago
.compatibility [devops] update torch version in compability test (#3919) 1 year ago
.coveragerc [devops] update torch version of CI (#3725) 2 years ago
.cuda_ext.json [workflow] added cuda extension build test before release (#2598) 2 years ago
.flake8 added flake8 config (#219) 3 years ago
.gitignore [workflow] fixed testmon cache in build CI (#3806) 2 years ago
.gitmodules [tutorial] update fastfold tutorial (#2565) 2 years ago
.isort.cfg [revert] recover "[refactor] restructure configuration files (#2977)" (#3022) 2 years ago
.pre-commit-config.yaml [revert] recover "[refactor] restructure configuration files (#2977)" (#3022) 2 years ago
.style.yapf [revert] recover "[refactor] restructure configuration files (#2977)" (#3022) 2 years ago
CHANGE_LOG.md [doc] updated the CHANGE_LOG.md for github release page (#2552) 2 years ago
CONTRIBUTING.md [doc] add a note about unit-testing to CONTRIBUTING.md (#3970) 1 year ago
LICENSE [Feature] The first PR to Add TP inference engine, kv-cache manager and related kernels for our inference system (#4577) 1 year ago
MANIFEST.in [builder] reconfig op_builder for pypi install (#2314) 2 years ago
README.md [format] applied code formatting on changed files in pull request 4726 (#4727) 1 year ago
pytest.ini Merge branch 'main' into feature/shardformer 1 year ago
setup.py [doc] fix setup.py typo (#3603) 2 years ago
version.txt [release] update version (#4623) 1 year ago

README.md

Colossal-AI

logo

Colossal-AI: Making large AI models cheaper, faster, and more accessible

Paper | Documentation | Examples | Forum | Blog

GitHub Repo stars Build Documentation CodeFactor HuggingFace badge slack badge WeChat badge

| English | 中文 |

Latest News

Table of Contents

Why Colossal-AI

Prof. James Demmel (UC Berkeley): Colossal-AI makes training AI models efficient, easy, and scalable.

(back to top)

Features

Colossal-AI provides a collection of parallel components for you. We aim to support you to write your distributed deep learning models just like how you write your model on your laptop. We provide user-friendly tools to kickstart distributed training and inference in a few lines.

(back to top)

Colossal-AI in the Real World

ColossalChat

ColossalChat: An open-source solution for cloning ChatGPT with a complete RLHF pipeline. [code] [blog] [demo] [tutorial]

  • Up to 10 times faster for RLHF PPO Stage3 Training

  • Up to 7.73 times faster for single server training and 1.42 times faster for single-GPU inference

  • Up to 10.3x growth in model capacity on one GPU
  • A mini demo training process requires only 1.62GB of GPU memory (any consumer-grade GPU)

  • Increase the capacity of the fine-tuning model by up to 3.7 times on a single GPU
  • Keep at a sufficiently high running speed

(back to top)

AIGC

Acceleration of AIGC (AI-Generated Content) models such as Stable Diffusion v1 and Stable Diffusion v2.

  • Training: Reduce Stable Diffusion memory consumption by up to 5.6x and hardware cost by up to 46x (from A100 to RTX3060).

  • Inference: Reduce inference GPU memory consumption by 2.5x.

(back to top)

Biomedicine

Acceleration of AlphaFold Protein Structure

  • FastFold: Accelerating training and inference on GPU Clusters, faster data processing, inference sequence containing more than 10000 residues.

  • xTrimoMultimer: accelerating structure prediction of protein monomers and multimer by 11x.

(back to top)

Parallel Training Demo

LLaMA2

  • 70 billion parameter LLaMA2 model training accelerated by 195% [code] [blog]

LLaMA1

  • 65-billion-parameter large model pretraining accelerated by 38% [code] [blog]

GPT-3

  • Save 50% GPU resources and 10.7% acceleration

GPT-2

  • 11x lower GPU memory consumption, and superlinear scaling efficiency with Tensor Parallelism
  • 24x larger model size on the same hardware
  • over 3x acceleration

BERT

  • 2x faster training, or 50% longer sequence length

PaLM

OPT

  • Open Pretrained Transformer (OPT), a 175-Billion parameter AI language model released by Meta, which stimulates AI programmers to perform various downstream tasks and application deployments because of public pre-trained model weights.
  • 45% speedup fine-tuning OPT at low cost in lines. [Example] [Online Serving]

Please visit our documentation and examples for more details.

ViT

  • 14x larger batch size, and 5x faster training for Tensor Parallelism = 64

Recommendation System Models

  • Cached Embedding, utilize software cache to train larger embedding tables with a smaller GPU memory budget.

(back to top)

Single GPU Training Demo

GPT-2

  • 20x larger model size on the same hardware

  • 120x larger model size on the same hardware (RTX 3080)

PaLM

  • 34x larger model size on the same hardware

(back to top)

Inference (Energon-AI) Demo

  • Energon-AI: 50% inference acceleration on the same hardware

  • OPT Serving: Try 175-billion-parameter OPT online services

  • BLOOM: Reduce hardware deployment costs of 176-billion-parameter BLOOM by more than 10 times.

(back to top)

Installation

Requirements:

If you encounter any problem with installation, you may want to raise an issue in this repository.

Install from PyPI

You can easily install Colossal-AI with the following command. By default, we do not build PyTorch extensions during installation.

pip install colossalai

Note: only Linux is supported for now.

However, if you want to build the PyTorch extensions during installation, you can set CUDA_EXT=1.

CUDA_EXT=1 pip install colossalai

Otherwise, CUDA kernels will be built during runtime when you actually need them.

We also keep releasing the nightly version to PyPI every week. This allows you to access the unreleased features and bug fixes in the main branch. Installation can be made via

pip install colossalai-nightly

Download From Source

The version of Colossal-AI will be in line with the main branch of the repository. Feel free to raise an issue if you encounter any problems. :)

git clone https://github.com/hpcaitech/ColossalAI.git
cd ColossalAI

# install colossalai
pip install .

By default, we do not compile CUDA/C++ kernels. ColossalAI will build them during runtime. If you want to install and enable CUDA kernel fusion (compulsory installation when using fused optimizer):

CUDA_EXT=1 pip install .

For Users with CUDA 10.2, you can still build ColossalAI from source. However, you need to manually download the cub library and copy it to the corresponding directory.

# clone the repository
git clone https://github.com/hpcaitech/ColossalAI.git
cd ColossalAI

# download the cub library
wget https://github.com/NVIDIA/cub/archive/refs/tags/1.8.0.zip
unzip 1.8.0.zip
cp -r cub-1.8.0/cub/ colossalai/kernel/cuda_native/csrc/kernels/include/

# install
CUDA_EXT=1 pip install .

(back to top)

Use Docker

Pull from DockerHub

You can directly pull the docker image from our DockerHub page. The image is automatically uploaded upon release.

Build On Your Own

Run the following command to build a docker image from Dockerfile provided.

Building Colossal-AI from scratch requires GPU support, you need to use Nvidia Docker Runtime as the default when doing docker build. More details can be found here. We recommend you install Colossal-AI from our project page directly.

cd ColossalAI
docker build -t colossalai ./docker

Run the following command to start the docker container in interactive mode.

docker run -ti --gpus all --rm --ipc=host colossalai bash

(back to top)

Community

Join the Colossal-AI community on Forum, Slack, and WeChat(微信) to share your suggestions, feedback, and questions with our engineering team.

Contributing

Referring to the successful attempts of BLOOM and Stable Diffusion, any and all developers and partners with computing powers, datasets, models are welcome to join and build the Colossal-AI community, making efforts towards the era of big AI models!

You may contact us or participate in the following ways:

  1. Leaving a Star to show your like and support. Thanks!
  2. Posting an issue, or submitting a PR on GitHub follow the guideline in Contributing
  3. Send your official proposal to email contact@hpcaitech.com

Thanks so much to all of our amazing contributors!

(back to top)

CI/CD

We leverage the power of GitHub Actions to automate our development, release and deployment workflows. Please check out this documentation on how the automated workflows are operated.

Cite Us

This project is inspired by some related projects (some by our team and some by other organizations). We would like to credit these amazing projects as listed in the Reference List.

To cite this project, you can use the following BibTeX citation.

@article{bian2021colossal,
  title={Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training},
  author={Bian, Zhengda and Liu, Hongxin and Wang, Boxiang and Huang, Haichen and Li, Yongbin and Wang, Chuanrui and Cui, Fan and You, Yang},
  journal={arXiv preprint arXiv:2110.14883},
  year={2021}
}

Colossal-AI has been accepted as official tutorial by top conferences NeurIPS, SC, AAAI, PPoPP, CVPR, ISC, NVIDIA GTC ,etc.

(back to top)