mirror of https://github.com/hpcaitech/ColossalAI
Jiarui Fang
2 years ago
committed by
GitHub
17 changed files with 13 additions and 332 deletions
@ -1,3 +1,4 @@
|
||||
include *.txt README.md |
||||
recursive-include requirements *.txt |
||||
recursive-include colossalai *.cpp *.h *.cu *.tr *.cuh *.cc *.pyi |
||||
recursive-include op_builder *.py |
||||
|
@ -1,7 +0,0 @@
|
||||
from .cpu_adam import CPUAdamBuilder |
||||
from .fused_optim import FusedOptimBuilder |
||||
from .moe import MOEBuilder |
||||
from .multi_head_attn import MultiHeadAttnBuilder |
||||
from .scaled_upper_triang_masked_softmax import ScaledSoftmaxBuilder |
||||
|
||||
__all__ = ['CPUAdamBuilder', 'FusedOptimBuilder', 'MultiHeadAttnBuilder', 'ScaledSoftmaxBuilder', 'MOEBuilder'] |
@ -1,104 +0,0 @@
|
||||
import os |
||||
import re |
||||
from pathlib import Path |
||||
from typing import List |
||||
|
||||
import torch |
||||
|
||||
|
||||
def get_cuda_cc_flag() -> List: |
||||
"""get_cuda_cc_flag |
||||
|
||||
cc flag for your GPU arch |
||||
""" |
||||
cc_flag = [] |
||||
for arch in torch.cuda.get_arch_list(): |
||||
res = re.search(r'sm_(\d+)', arch) |
||||
if res: |
||||
arch_cap = res[1] |
||||
if int(arch_cap) >= 60: |
||||
cc_flag.extend(['-gencode', f'arch=compute_{arch_cap},code={arch}']) |
||||
|
||||
return cc_flag |
||||
|
||||
|
||||
class Builder(object): |
||||
|
||||
def colossalai_src_path(self, code_path): |
||||
if os.path.isabs(code_path): |
||||
return code_path |
||||
else: |
||||
return os.path.join(Path(__file__).parent.parent.absolute(), code_path) |
||||
|
||||
def get_cuda_home_include(self): |
||||
""" |
||||
return include path inside the cuda home. |
||||
""" |
||||
from torch.utils.cpp_extension import CUDA_HOME |
||||
if CUDA_HOME is None: |
||||
raise RuntimeError("CUDA_HOME is None, please set CUDA_HOME to compile C++/CUDA kernels in ColossalAI.") |
||||
cuda_include = os.path.join(CUDA_HOME, "include") |
||||
return cuda_include |
||||
|
||||
# functions must be overrided begin |
||||
def sources_files(self): |
||||
raise NotImplementedError |
||||
|
||||
def include_dirs(self): |
||||
raise NotImplementedError |
||||
|
||||
def cxx_flags(self): |
||||
raise NotImplementedError |
||||
|
||||
def nvcc_flags(self): |
||||
raise NotImplementedError |
||||
|
||||
# functions must be overrided over |
||||
|
||||
def strip_empty_entries(self, args): |
||||
''' |
||||
Drop any empty strings from the list of compile and link flags |
||||
''' |
||||
return [x for x in args if len(x) > 0] |
||||
|
||||
def load(self, verbose=True): |
||||
""" |
||||
|
||||
load and compile cpu_adam lib at runtime |
||||
|
||||
Args: |
||||
verbose (bool, optional): show detailed info. Defaults to True. |
||||
""" |
||||
import time |
||||
|
||||
from torch.utils.cpp_extension import load |
||||
start_build = time.time() |
||||
|
||||
op_module = load(name=self.name, |
||||
sources=self.strip_empty_entries(self.sources_files()), |
||||
extra_include_paths=self.strip_empty_entries(self.include_dirs()), |
||||
extra_cflags=self.cxx_flags(), |
||||
extra_cuda_cflags=self.nvcc_flags(), |
||||
extra_ldflags=[], |
||||
verbose=verbose) |
||||
|
||||
build_duration = time.time() - start_build |
||||
if verbose: |
||||
print(f"Time to load {self.name} op: {build_duration} seconds") |
||||
|
||||
return op_module |
||||
|
||||
def builder(self, name) -> 'CUDAExtension': |
||||
""" |
||||
get a CUDAExtension instance used for setup.py |
||||
""" |
||||
from torch.utils.cpp_extension import CUDAExtension |
||||
|
||||
return CUDAExtension( |
||||
name=name, |
||||
sources=[os.path.join('colossalai/kernel/cuda_native/csrc', path) for path in self.sources_files()], |
||||
include_dirs=self.include_dirs(), |
||||
extra_compile_args={ |
||||
'cxx': self.cxx_flags(), |
||||
'nvcc': self.nvcc_flags() |
||||
}) |
@ -1,42 +0,0 @@
|
||||
import os |
||||
|
||||
from .builder import Builder |
||||
from .utils import append_nvcc_threads |
||||
|
||||
|
||||
class CPUAdamBuilder(Builder): |
||||
NAME = "cpu_adam" |
||||
BASE_DIR = "cuda_native" |
||||
|
||||
def __init__(self): |
||||
self.name = CPUAdamBuilder.NAME |
||||
super().__init__() |
||||
|
||||
self.version_dependent_macros = ['-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5'] |
||||
|
||||
# necessary 4 functions |
||||
def sources_files(self): |
||||
ret = [ |
||||
os.path.join(CPUAdamBuilder.BASE_DIR, "csrc/cpu_adam.cpp"), |
||||
] |
||||
return [self.colossalai_src_path(path) for path in ret] |
||||
|
||||
def include_dirs(self): |
||||
return [ |
||||
self.colossalai_src_path(os.path.join(CPUAdamBuilder.BASE_DIR, "includes")), |
||||
self.get_cuda_home_include() |
||||
] |
||||
|
||||
def cxx_flags(self): |
||||
extra_cxx_flags = ['-std=c++14', '-lcudart', '-lcublas', '-g', '-Wno-reorder', '-fopenmp', '-march=native'] |
||||
return ['-O3'] + self.version_dependent_macros + extra_cxx_flags |
||||
|
||||
def nvcc_flags(self): |
||||
extra_cuda_flags = [ |
||||
'-std=c++14', '-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', |
||||
'-U__CUDA_NO_HALF2_OPERATORS__', '-DTHRUST_IGNORE_CUB_VERSION_CHECK' |
||||
] |
||||
|
||||
return append_nvcc_threads(['-O3', '--use_fast_math'] + self.version_dependent_macros + extra_cuda_flags) |
||||
|
||||
# necessary 4 functions |
@ -1,35 +0,0 @@
|
||||
import os |
||||
|
||||
from .builder import Builder, get_cuda_cc_flag |
||||
|
||||
|
||||
class FusedOptimBuilder(Builder): |
||||
NAME = 'fused_optim' |
||||
BASE_DIR = "cuda_native/csrc" |
||||
|
||||
def __init__(self): |
||||
self.name = FusedOptimBuilder.NAME |
||||
super().__init__() |
||||
self.version_dependent_macros = ['-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5'] |
||||
|
||||
def sources_files(self): |
||||
ret = [ |
||||
self.colossalai_src_path(os.path.join(FusedOptimBuilder.BASE_DIR, fname)) for fname in [ |
||||
'colossal_C_frontend.cpp', 'multi_tensor_sgd_kernel.cu', 'multi_tensor_scale_kernel.cu', |
||||
'multi_tensor_adam.cu', 'multi_tensor_l2norm_kernel.cu', 'multi_tensor_lamb.cu' |
||||
] |
||||
] |
||||
return ret |
||||
|
||||
def include_dirs(self): |
||||
ret = [os.path.join(FusedOptimBuilder.BASE_DIR, "includes"), self.get_cuda_home_include()] |
||||
return [self.colossalai_src_path(path) for path in ret] |
||||
|
||||
def cxx_flags(self): |
||||
extra_cxx_flags = [] |
||||
return ['-O3'] + self.version_dependent_macros + extra_cxx_flags |
||||
|
||||
def nvcc_flags(self): |
||||
extra_cuda_flags = ['-lineinfo'] |
||||
extra_cuda_flags.extend(get_cuda_cc_flag()) |
||||
return ['-O3', '--use_fast_math'] + extra_cuda_flags |
@ -1,33 +0,0 @@
|
||||
import os |
||||
|
||||
from .builder import Builder, get_cuda_cc_flag |
||||
|
||||
|
||||
class MOEBuilder(Builder): |
||||
|
||||
def __init__(self): |
||||
self.base_dir = "cuda_native/csrc" |
||||
self.name = 'moe' |
||||
super().__init__() |
||||
|
||||
def include_dirs(self): |
||||
ret = [] |
||||
ret = [os.path.join(self.base_dir, "includes"), self.get_cuda_home_include()] |
||||
ret.append(os.path.join(self.base_dir, "kernels", "include")) |
||||
return [self.colossalai_src_path(path) for path in ret] |
||||
|
||||
def sources_files(self): |
||||
ret = [os.path.join(self.base_dir, fname) for fname in ['moe_cuda.cpp', 'moe_cuda_kernel.cu']] |
||||
return [self.colossalai_src_path(path) for path in ret] |
||||
|
||||
def cxx_flags(self): |
||||
return ['-O3', '-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5'] |
||||
|
||||
def nvcc_flags(self): |
||||
extra_cuda_flags = [ |
||||
'-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '--expt-relaxed-constexpr', |
||||
'--expt-extended-lambda' |
||||
] |
||||
extra_cuda_flags.extend(get_cuda_cc_flag()) |
||||
ret = ['-O3', '--use_fast_math'] + extra_cuda_flags |
||||
return ret |
@ -1,41 +0,0 @@
|
||||
import os |
||||
|
||||
from .builder import Builder, get_cuda_cc_flag |
||||
|
||||
|
||||
class MultiHeadAttnBuilder(Builder): |
||||
|
||||
def __init__(self): |
||||
self.base_dir = "cuda_native/csrc" |
||||
self.name = 'multihead_attention' |
||||
super().__init__() |
||||
|
||||
self.version_dependent_macros = ['-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5'] |
||||
|
||||
def include_dirs(self): |
||||
ret = [] |
||||
ret = [os.path.join(self.base_dir, "includes"), self.get_cuda_home_include()] |
||||
ret.append(os.path.join(self.base_dir, "kernels", "include")) |
||||
return [self.colossalai_src_path(path) for path in ret] |
||||
|
||||
def sources_files(self): |
||||
ret = [ |
||||
os.path.join(self.base_dir, fname) for fname in [ |
||||
'multihead_attention_1d.cpp', 'kernels/cublas_wrappers.cu', 'kernels/transform_kernels.cu', |
||||
'kernels/dropout_kernels.cu', 'kernels/normalize_kernels.cu', 'kernels/softmax_kernels.cu', |
||||
'kernels/general_kernels.cu', 'kernels/cuda_util.cu' |
||||
] |
||||
] |
||||
return [self.colossalai_src_path(path) for path in ret] |
||||
|
||||
def cxx_flags(self): |
||||
return ['-O3'] + self.version_dependent_macros |
||||
|
||||
def nvcc_flags(self): |
||||
extra_cuda_flags = [ |
||||
'-std=c++14', '-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', |
||||
'-U__CUDA_NO_HALF2_OPERATORS__', '-DTHRUST_IGNORE_CUB_VERSION_CHECK' |
||||
] |
||||
extra_cuda_flags.extend(get_cuda_cc_flag()) |
||||
ret = ['-O3', '--use_fast_math'] + extra_cuda_flags |
||||
return ret |
@ -1,36 +0,0 @@
|
||||
import os |
||||
|
||||
from .builder import Builder, get_cuda_cc_flag |
||||
|
||||
|
||||
class ScaledSoftmaxBuilder(Builder): |
||||
|
||||
def __init__(self): |
||||
self.base_dir = "cuda_native/csrc" |
||||
self.name = 'scaled_upper_triang_masked_softmax' |
||||
super().__init__() |
||||
|
||||
def include_dirs(self): |
||||
ret = [] |
||||
ret = [os.path.join(self.base_dir, "includes"), self.get_cuda_home_include()] |
||||
ret.append(os.path.join(self.base_dir, "kernels", "include")) |
||||
return [self.colossalai_src_path(path) for path in ret] |
||||
|
||||
def sources_files(self): |
||||
ret = [ |
||||
os.path.join(self.base_dir, fname) |
||||
for fname in ['scaled_upper_triang_masked_softmax.cpp', 'scaled_upper_triang_masked_softmax_cuda.cu'] |
||||
] |
||||
return [self.colossalai_src_path(path) for path in ret] |
||||
|
||||
def cxx_flags(self): |
||||
return ['-O3'] |
||||
|
||||
def nvcc_flags(self): |
||||
extra_cuda_flags = [ |
||||
'-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '--expt-relaxed-constexpr', |
||||
'--expt-extended-lambda' |
||||
] |
||||
extra_cuda_flags.extend(get_cuda_cc_flag()) |
||||
ret = ['-O3', '--use_fast_math'] + extra_cuda_flags |
||||
return ret |
@ -1,20 +0,0 @@
|
||||
import subprocess |
||||
|
||||
|
||||
def get_cuda_bare_metal_version(cuda_dir): |
||||
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) |
||||
output = raw_output.split() |
||||
release_idx = output.index("release") + 1 |
||||
release = output[release_idx].split(".") |
||||
bare_metal_major = release[0] |
||||
bare_metal_minor = release[1][0] |
||||
|
||||
return raw_output, bare_metal_major, bare_metal_minor |
||||
|
||||
|
||||
def append_nvcc_threads(nvcc_extra_args): |
||||
from torch.utils.cpp_extension import CUDA_HOME |
||||
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) |
||||
if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2: |
||||
return nvcc_extra_args + ["--threads", "4"] |
||||
return nvcc_extra_args |
Loading…
Reference in new issue