ColossalAI/applications/Chat/examples
Wenhao Chen 153b957a1b
[chat] refactor strategy class with booster api (#3987)
* refactor: adapt boost API in base and naive strategies

* fix: initialize plugin after setup_distributed

* fix: fix save_pretrained fn

* refactor: adapt boost API in DDPStrategy

* to: add _post_init check

* to: fix ddp backward, modify ddp dataloader and unwrap

* feat: adapt boost API in ColossalAIStrategy

* fix: call setup_distributed before use get_current_device

* fix: fix save_model and save_optimizer

* test: remove save_sharded_optimizer test

* style: apply formatter

* fix: fix stage check and add comments

* feat: allow dict type arg in strategy.prepare

* to: temporarily remove lr_scheduler for testing

* style: simplify init of ColossalAIStrategy

* fix: fix lr_scheduler in sft and rm

* style: modify comments

* test: add train_prompts tests

* fix: fix inference only case and use in train_prompts

* test: skip failed tests in ci

* style: fix CodeFactor check

* fix: do not use model.to('cpu') with GeminiPlugin

* test: enable colossalai_gemini tests

* test: set CUDA_VISIBLE_DEVICES in ci

* docs: add note
2023-06-25 17:36:21 +08:00
..
community [NFC] fix typo applications/ and colossalai/ (#3735) 2023-05-15 11:46:25 +08:00
ray [chat] add distributed PPO trainer (#3740) 2023-06-07 10:41:16 +08:00
README.md [chat] add performance and tutorial (#3786) 2023-05-19 18:03:56 +08:00
generate_prompt_dataset.py [chat] fix bugs in stage 3 training (#3759) 2023-05-17 17:44:05 +08:00
inference.py [chatgpt] add pre-trained model RoBERTa for RLHF stage 2 & 3 (#3223) 2023-04-03 10:11:03 +08:00
requirements.txt [Coati] first commit (#3283) 2023-03-28 20:25:36 +08:00
test_ci.sh [chat] refactor strategy class with booster api (#3987) 2023-06-25 17:36:21 +08:00
train_prompts.py [chat] refactor strategy class with booster api (#3987) 2023-06-25 17:36:21 +08:00
train_prompts.sh [Doc] enhancement on README.md for chat examples (#3646) 2023-04-27 14:26:19 +08:00
train_reward_model.py [chat] refactor strategy class with booster api (#3987) 2023-06-25 17:36:21 +08:00
train_rm.sh [chat] update reward model sh (#3578) 2023-04-17 15:02:55 +08:00
train_sft.py [chat] refactor strategy class with booster api (#3987) 2023-06-25 17:36:21 +08:00
train_sft.sh [chat] typo accimulation_steps -> accumulation_steps (#3662) 2023-04-28 15:42:57 +08:00

README.md

Examples

Table of Contents


Install requirements

pip install -r requirements.txt

Supervised datasets collection

We collected 104K bilingual dataset of Chinese and English, and you can find the datasets in this repo InstructionWild.

The following pic shows how we collected the data.

Stage1 - Supervised instructs tuning

Stage1 is supervised instructs fine-tuning, which uses the datasets mentioned earlier to fine-tune the model. [Stage1 tutorial video]

You can run the examples/train_sft.sh to start a supervised instructs fine-tuning.

You can also use the following cmd to start a supervised instructs fine-tuning with your own settings.

torchrun --standalone --nproc_per_node=4 train_sft.py \
    --pretrain "/path/to/LLaMa-7B/" \
    --model 'llama' \
    --strategy colossalai_zero2 \
    --log_interval 10 \
    --save_path  /path/to/Coati-7B \
    --dataset /path/to/data.json \
    --batch_size 4 \
    --accumulation_steps 8 \
    --lr 2e-5 \
    --max_datasets_size 512 \
    --max_epochs 1 \
    --grad_checkpoint

Arg List

  • --strategy: the strategy using for training, choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'], default='colossalai_zero2'
  • --model: model type, choices=['gpt2', 'bloom', 'opt', 'llama'], default='bloom'
  • --pretrain: pretrain model, type=str, default=None
  • --max_datasets_size: the max size of dataset, type=int, default=None
  • --save_path: path to save the model, type=str, default='output'
  • --need_optim_ckpt: whether to save optim ckpt, type=bool, default=False
  • --max_epochs: max epochs for training, type=int, default=3
  • --batch_size: batch size while training, type=int, default=4
  • --lora_rank: low-rank adaptation matrices rank, type=int, default=0
  • --log_interval: how many steps to log, type=int, default=100
  • --grad_checkpoint: enable gradient checkpointing, type=bool, default=False

Stage2 - Training reward model

We train a reward model in stage 2, which obtains corresponding scores by manually ranking different outputs for the same prompt and supervises the training of the reward model. [Stage2 tutorial video]

You can run the examples/train_rm.sh to start a reward model training.

You can also use the following cmd to start training a reward model.

torchrun --standalone --nproc_per_node=4 train_reward_model.py \
    --pretrain "/path/to/LLaMa-7B/" \
    --model 'llama' \
    --strategy colossalai_zero2 \
    --loss_fn 'log_exp'\
    --save_path 'rmstatic.pt' \

Features and tricks in RM training

  • We support Anthropic/hh-rlhfandrm-static datasets.
  • We support 2 kinds of loss_function named 'log_sig'(used by OpenAI) and 'log_exp'(used by Anthropic).
  • We change the loss to valid_acc and pair_dist to monitor progress during training.
  • We add special token to the end of the sequence to get better result.
  • We use cosine-reducing lr-scheduler for RM training.
  • We set value_head as 1 liner layer and initialize the weight of value_head using N(01/(d_model + 1)) distribution.
  • We train a Bloom-560m reward model for 1 epoch and find the test acc of the model achieve the performance mentions in Anthropics paper.

Experiment result

Model performance in Anthropics paper:

image
Our training & test result of bloom-560m for 1 epoch:
image
We also train the reward model based on LLaMA-7B, which reaches the ACC of 72.06% after 1 epoch, performing almost the same as Anthropic's best RM.

Arg List

  • --strategy: the strategy using for training, choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'], default='colossalai_zero2'
  • --model: model type, choices=['gpt2', 'bloom', 'opt', 'llama'], default='bloom'
  • --pretrain: pretrain model, type=str, default=None
  • --model_path: the path of rm model(if continue to train), type=str, default=None
  • --save_path: path to save the model, type=str, default='output'
  • --need_optim_ckpt: whether to save optim ckpt, type=bool, default=False
  • --max_epochs: max epochs for training, type=int, default=3
  • --dataset: dataset name, type=str, choices=['Anthropic/hh-rlhf', 'Dahoas/rm-static']
  • --subset: subset of the dataset, type=str, default=None
  • --batch_size: batch size while training, type=int, default=4
  • --lora_rank: low-rank adaptation matrices rank, type=int, default=0
  • --loss_func: which kind of loss function, choices=['log_sig', 'log_exp']
  • --max_len: max sentence length for generation, type=int, default=512
  • --test: whether is only testing, if it's true, the dataset will be small

Stage3 - Training model using prompts with RL

Stage3 uses reinforcement learning algorithm, which is the most complex part of the training process, as shown below:

You can run the examples/train_prompts.sh to start PPO training. You can also use the cmd following to start PPO training. [Stage3 tutorial video]

torchrun --standalone --nproc_per_node=4 train_prompts.py \
         --pretrain "/path/to/LLaMa-7B/" \
         --model 'llama' \
         --strategy colossalai_zero2 \
         --prompt_dataset /path/to/your/prompt_dataset \
         --pretrain_dataset /path/to/your/pretrain_dataset \
         --rm_pretrain /your/pretrain/rm/definition \
         --rm_path /your/rm/model/path

Prompt dataset: the instruction dataset mentioned in the above figure which includes the instructions, e.g. you can use the script which samples instinwild_en.json or instinwild_ch.json in InstructionWild to generate the prompt dataset. Pretrain dataset: the pretrain dataset including the instruction and corresponding response, e.g. you can use the InstructWild Data in stage 1 supervised instructs tuning.

Arg List

  • --strategy: the strategy using for training, choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'], default='colossalai_zero2'
  • --model: model type of actor, choices=['gpt2', 'bloom', 'opt', 'llama'], default='bloom'
  • --pretrain: pretrain model, type=str, default=None
  • --rm_model: reward model type, type=str, choices=['gpt2', 'bloom', 'opt', 'llama'], default=None
  • --rm_pretrain: pretrain model for reward model, type=str, default=None
  • --rm_path: the path of rm model, type=str, default=None
  • --save_path: path to save the model, type=str, default='output'
  • --prompt_dataset: path of the prompt dataset, type=str, default=None
  • --pretrain_dataset: path of the ptx dataset, type=str, default=None
  • --need_optim_ckpt: whether to save optim ckpt, type=bool, default=False
  • --num_episodes: num of episodes for training, type=int, default=10
  • --max_epochs: max epochs for training in one episode, type=int, default=5
  • --max_timesteps: max episodes in one batch, type=int, default=10
  • --update_timesteps: timesteps to update, type=int, default=10
  • --train_batch_size: batch size while training, type=int, default=8
  • --ptx_batch_size: batch size to compute ptx loss, type=int, default=1
  • --experience_batch_size: batch size to make experience, type=int, default=8
  • --lora_rank: low-rank adaptation matrices rank, type=int, default=0
  • --kl_coef: kl_coef using for computing reward, type=float, default=0.1
  • --ptx_coef: ptx_coef using for computing policy loss, type=float, default=0.9

Inference example - After Stage3

We support different inference options, including int8 and int4 quantization. For details, see inference/.

Attention

The examples are demos for the whole training process.You need to change the hyper-parameters to reach great performance.

data

Support Model

GPT

  • GPT2-S (s)
  • GPT2-M (m)
  • GPT2-L (l)
  • GPT2-XL (xl)
  • GPT2-4B (4b)
  • GPT2-6B (6b)

BLOOM

OPT

LLaMA

  • LLaMA-7B
  • LLaMA-13B
  • LLaMA-33B
  • LLaMA-65B

Add your own models

If you want to support your own model in Coati, please refer the pull request for RoBERTa support as an example --[chatgpt] add pre-trained model RoBERTa for RLHF stage 2 & 3, and submit a PR to us.

You should complete the implementation of four model classes, including Reward model, Critic model, LM model, Actor model

here are some example code for a NewModel named Coati. if it is supported in huggingface transformers, you can load it by from_pretrained, o r you can build your own model by yourself.

Actor model

from ..base import Actor
from transformers.models.coati import CoatiModel

class CoatiActor(Actor):

    def __init__(self,
                 pretrained: Optional[str] = None,
                 checkpoint: bool = False,
                 lora_rank: int = 0,
                 lora_train_bias: str = 'none') -> None:
        if pretrained is not None:
            model = CoatiModel.from_pretrained(pretrained)
        else:
            model = build_model() # load your own model if it is not support in transformers

        super().__init__(model, lora_rank, lora_train_bias)

Reward model

from ..base import RewardModel
from transformers.models.coati import CoatiModel

class CoatiRM(RewardModel):

    def __init__(self,
                 pretrained: Optional[str] = None,
                 checkpoint: bool = False,
                 lora_rank: int = 0,
                 lora_train_bias: str = 'none') -> None:
        if pretrained is not None:
            model = CoatiModel.from_pretrained(pretrained)
        else:
            model = build_model() # load your own model if it is not support in transformers

        value_head = nn.Linear(model.config.n_embd, 1)
        value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.n_embd + 1))
        super().__init__(model, value_head, lora_rank, lora_train_bias)

Critic model

from ..base import Critic
from transformers.models.coati import CoatiModel

class CoatiCritic(Critic):

    def __init__(self,
                 pretrained: Optional[str] = None,
                 checkpoint: bool = False,
                 lora_rank: int = 0,
                 lora_train_bias: str = 'none') -> None:
        if pretrained is not None:
            model = CoatiModel.from_pretrained(pretrained)
        else:
            model = build_model() # load your own model if it is not support in transformers

        value_head = nn.Linear(model.config.n_embd, 1)
        value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.n_embd + 1))
        super().__init__(model, value_head, lora_rank, lora_train_bias)