mirror of https://github.com/hpcaitech/ColossalAI
[chatgpt] add pre-trained model RoBERTa for RLHF stage 2 & 3 (#3223)
* Add RoBERTa for RLHF Stage 2 & 3 (test) RoBERTa for RLHF Stage 2 & 3 (still in testing) * Revert "Add RoBERTa for RLHF Stage 2 & 3 (test)" This reverts commitpull/3418/head06741d894d
. * Add RoBERTa for RLHF stage 2 & 3 1. add roberta folder under model folder 2. add roberta option in train_reward_model.py 3. add some test in testci * add test for reward model training * Update test_ci.sh * Revert "Update test_ci.sh" This reverts commit 9c7352b81766f3177d31eeec0ec178a301df966a. * Add RoBERTa for RLHF Stage 2 & 3 (test) RoBERTa for RLHF Stage 2 & 3 (still in testing) * Revert "Add RoBERTa for RLHF Stage 2 & 3 (test)" This reverts commit06741d894d
. * Add RoBERTa for RLHF stage 2 & 3 1. add roberta folder under model folder 2. add roberta option in train_reward_model.py 3. add some test in testci * Update test_ci.sh * Revert "Update test_ci.sh" This reverts commit 9c7352b81766f3177d31eeec0ec178a301df966a. * update roberta with coati
parent
94c24d9444
commit
30412866e0
|
@ -0,0 +1,5 @@
|
|||
from .roberta_actor import RoBERTaActor
|
||||
from .roberta_critic import RoBERTaCritic
|
||||
from .roberta_rm import RoBERTaRM
|
||||
|
||||
__all__ = ['RoBERTaActor', 'RoBERTaCritic', 'RoBERTaRM']
|
|
@ -0,0 +1,35 @@
|
|||
from typing import Optional
|
||||
|
||||
from transformers.models.roberta.configuration_roberta import RobertaConfig
|
||||
from transformers.models.roberta.modeling_roberta import RobertaForCausalLM
|
||||
|
||||
from ..base import Actor
|
||||
|
||||
class RoBERTaActor(Actor):
|
||||
"""
|
||||
RoBERTa Actor model.
|
||||
|
||||
Args:
|
||||
pretrained (str): Pretrained model name or path.
|
||||
config (RoBERTaConfig): Model config.
|
||||
checkpoint (bool): Enable gradient checkpointing.
|
||||
lora_rank (int): Rank of the low-rank approximation.
|
||||
lora_train_bias (str): LoRA bias training mode.
|
||||
"""
|
||||
|
||||
|
||||
def __init__(self,
|
||||
pretrained: Optional[str] = None,
|
||||
config: Optional[RobertaConfig] = None,
|
||||
checkpoint: bool = False,
|
||||
lora_rank: int = 0,
|
||||
lora_train_bias: str = 'none') -> None:
|
||||
if pretrained is not None:
|
||||
model = RobertaForCausalLM.from_pretrained(pretrained)
|
||||
elif config is not None:
|
||||
model = RobertaForCausalLM(config)
|
||||
else:
|
||||
model = RobertaForCausalLM(RobertaConfig())
|
||||
if checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
super().__init__(model, lora_rank, lora_train_bias)
|
|
@ -0,0 +1,38 @@
|
|||
from typing import Optional
|
||||
|
||||
import torch.nn as nn
|
||||
from transformers.models.roberta.configuration_roberta import RobertaConfig
|
||||
from transformers.models.roberta.modeling_roberta import RobertaModel
|
||||
|
||||
from ..base import Critic
|
||||
|
||||
|
||||
class RoBERTaCritic(Critic):
|
||||
"""
|
||||
RoBERTa Critic model.
|
||||
|
||||
Args:
|
||||
pretrained (str): Pretrained model name or path.
|
||||
config (RoBERTa Config): Model config.
|
||||
checkpoint (bool): Enable gradient checkpointing.
|
||||
lora_rank (int): Rank of the low-rank approximation.
|
||||
lora_train_bias (str): LoRA bias training mode.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
pretrained: Optional[str] = None,
|
||||
config: Optional[RobertaConfig] = None,
|
||||
checkpoint: bool = False,
|
||||
lora_rank: int = 0,
|
||||
lora_train_bias: str = 'none',
|
||||
**kwargs) -> None:
|
||||
if pretrained is not None:
|
||||
model = RobertaModel.from_pretrained(pretrained, add_pooling_layer=False)
|
||||
elif config is not None:
|
||||
model = RobertaModel(config)
|
||||
else:
|
||||
model = RobertaModel(RobertaConfig())
|
||||
if checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
value_head = nn.Linear(model.config.hidden_size, 1)
|
||||
super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)
|
|
@ -0,0 +1,39 @@
|
|||
from typing import Optional
|
||||
|
||||
import torch.nn as nn
|
||||
from transformers import RobertaConfig, RobertaModel
|
||||
|
||||
|
||||
from ..base import RewardModel
|
||||
|
||||
|
||||
class RoBERTaRM(RewardModel):
|
||||
"""
|
||||
RoBERTa Reward model.
|
||||
|
||||
Args:
|
||||
pretrained (str): Pretrained model name or path.
|
||||
config (RoBERTaConfig): Model config.
|
||||
checkpoint (bool): Enable gradient checkpointing.
|
||||
lora_rank (int): Rank of the low-rank approximation.
|
||||
lora_train_bias (str): LoRA bias training mode.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
pretrained: Optional[str] = None,
|
||||
config: Optional[RobertaConfig] = None,
|
||||
checkpoint: bool = False,
|
||||
lora_rank: int = 0,
|
||||
lora_train_bias: str = 'none') -> None:
|
||||
if pretrained is not None:
|
||||
model = RobertaModel.from_pretrained(pretrained, add_pooling_layer=False)
|
||||
elif config is not None:
|
||||
model = RobertaModel(config)
|
||||
else:
|
||||
model = RobertaModel(RobertaConfig())
|
||||
if checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
|
||||
value_head = nn.Linear(model.config.hidden_size, 1)
|
||||
value_head.weight.data.normal_(mean=0.0, std=1/(model.config.hidden_size + 1))
|
||||
super().__init__(model, value_head, lora_rank, lora_train_bias)
|
|
@ -4,7 +4,8 @@ import torch
|
|||
from coati.models.bloom import BLOOMActor
|
||||
from coati.models.gpt import GPTActor
|
||||
from coati.models.opt import OPTActor
|
||||
from transformers import AutoTokenizer
|
||||
from coati.models.roberta import RoBERTaActor
|
||||
from transformers import AutoTokenizer, RobertaTokenizer
|
||||
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
||||
|
||||
|
||||
|
@ -16,6 +17,8 @@ def eval(args):
|
|||
actor = BLOOMActor(pretrained=args.pretrain).to(torch.cuda.current_device())
|
||||
elif args.model == 'opt':
|
||||
actor = OPTActor(pretrained=args.pretrain).to(torch.cuda.current_device())
|
||||
elif args.model == 'roberta':
|
||||
actor = RoBERTaActor(pretrained=args.pretrain).to(torch.cuda.current_device())
|
||||
else:
|
||||
raise ValueError(f'Unsupported model "{args.model}"')
|
||||
|
||||
|
@ -31,6 +34,8 @@ def eval(args):
|
|||
tokenizer.pad_token = tokenizer.eos_token
|
||||
elif args.model == 'opt':
|
||||
tokenizer = AutoTokenizer.from_pretrained('facebook/opt-350m')
|
||||
elif args.model == 'roberta':
|
||||
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
||||
else:
|
||||
raise ValueError(f'Unsupported model "{args.model}"')
|
||||
|
||||
|
@ -49,7 +54,7 @@ def eval(args):
|
|||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt'])
|
||||
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt', 'roberta'])
|
||||
# We suggest to use the pretrained model from HuggingFace, use pretrain to configure model
|
||||
parser.add_argument('--pretrain', type=str, default=None)
|
||||
parser.add_argument('--model_path', type=str, default=None)
|
||||
|
|
|
@ -40,6 +40,13 @@ torchrun --standalone --nproc_per_node=2 ${BASE}/train_dummy.py \
|
|||
--save_path ${BASE}/actor_checkpoint_dummy.pt
|
||||
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_dummy.pt --pretrain 'gpt2' --model gpt2
|
||||
|
||||
torchrun --standalone --nproc_per_node=2 ${BASE}/train_dummy.py \
|
||||
--strategy colossalai_zero2 --num_episodes 1 --max_timesteps 2 \
|
||||
--update_timesteps 2 --max_epochs 1 --train_batch_size 2\
|
||||
--pretrain 'roberta-base' --model roberta --lora_rank 4\
|
||||
--save_path ${BASE}/actor_checkpoint_dummy.pt
|
||||
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_dummy.pt --pretrain 'roberta-base' --model roberta
|
||||
|
||||
rm -rf ${BASE}/actor_checkpoint_dummy.pt
|
||||
|
||||
# train prompts
|
||||
|
@ -68,6 +75,13 @@ torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py $PROMPT_PATH \
|
|||
--save_path ${BASE}/actor_checkpoint_prompts.pt
|
||||
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_prompts.pt --pretrain 'gpt2' --model gpt2
|
||||
|
||||
torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py $PROMPT_PATH \
|
||||
--strategy colossalai_zero2 --num_episodes 1 --max_timesteps 2 \
|
||||
--update_timesteps 2 --max_epochs 1 --train_batch_size 2\
|
||||
--pretrain 'roberta-base' --model roberta --lora_rank 4\
|
||||
--save_path ${BASE}/actor_checkpoint_prompts.pt
|
||||
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_prompts.pt --pretrain 'roberta-base' --model roberta
|
||||
|
||||
rm -rf ${BASE}/actor_checkpoint_prompts.pt
|
||||
|
||||
# train rm
|
||||
|
@ -94,4 +108,10 @@ torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \
|
|||
--dataset 'Anthropic/hh-rlhf' --subset 'harmless-base'\
|
||||
--test True --lora_rank 4
|
||||
|
||||
torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \
|
||||
--pretrain 'roberta-base' --model 'roberta' \
|
||||
--strategy colossalai_zero2 --loss_fn 'log_exp'\
|
||||
--dataset 'Anthropic/hh-rlhf' --subset 'harmless-base'\
|
||||
--test True --lora_rank 4
|
||||
|
||||
rm -rf ${BASE}/rm_ckpt.pt
|
||||
|
|
|
@ -6,11 +6,12 @@ from coati.models.base import RewardModel
|
|||
from coati.models.bloom import BLOOMActor, BLOOMCritic
|
||||
from coati.models.gpt import GPTActor, GPTCritic
|
||||
from coati.models.opt import OPTActor, OPTCritic
|
||||
from coati.models.roberta import RoBERTaActor, RoBERTaCritic
|
||||
from coati.trainer import PPOTrainer
|
||||
from coati.trainer.callbacks import SaveCheckpoint
|
||||
from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
|
||||
from torch.optim import Adam
|
||||
from transformers import AutoTokenizer, BloomTokenizerFast
|
||||
from transformers import AutoTokenizer, BloomTokenizerFast, RobertaTokenizer
|
||||
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
||||
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
|
@ -46,6 +47,9 @@ def main(args):
|
|||
elif args.model == 'opt':
|
||||
actor = OPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
|
||||
critic = OPTCritic(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
|
||||
elif args.model == 'roberta':
|
||||
actor = RoBERTaActor(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
|
||||
critic = RoBERTaCritic(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
|
||||
else:
|
||||
raise ValueError(f'Unsupported model "{args.model}"')
|
||||
|
||||
|
@ -69,6 +73,8 @@ def main(args):
|
|||
tokenizer.pad_token = tokenizer.eos_token
|
||||
elif args.model == 'opt':
|
||||
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
||||
elif args.model == 'roberta':
|
||||
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
||||
else:
|
||||
raise ValueError(f'Unsupported model "{args.model}"')
|
||||
|
||||
|
@ -128,7 +134,7 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--strategy',
|
||||
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
|
||||
default='naive')
|
||||
parser.add_argument('--model', type=str, default='gpt2', choices=['gpt2', 'bloom', 'opt'])
|
||||
parser.add_argument('--model', type=str, default='gpt2', choices=['gpt2', 'bloom', 'opt', 'roberta'])
|
||||
parser.add_argument('--pretrain', type=str, default=None)
|
||||
parser.add_argument('--save_path', type=str, default='actor_checkpoint_dummy.pt')
|
||||
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
|
||||
|
|
|
@ -8,13 +8,14 @@ from coati.models.bloom import BLOOMRM, BLOOMActor, BLOOMCritic
|
|||
from coati.models.gpt import GPTRM, GPTActor, GPTCritic
|
||||
from coati.models.llama import LlamaActor, LlamaCritic, LlamaRM
|
||||
from coati.models.opt import OPTRM, OPTActor, OPTCritic
|
||||
from coati.models.roberta import RoBERTaRM, RoBERTaActor, RoBERTaCritic
|
||||
from coati.trainer import PPOTrainer
|
||||
from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
|
||||
from coati.utils import prepare_llama_tokenizer_and_embedding
|
||||
from torch.optim import Adam
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from transformers import AutoTokenizer, BloomTokenizerFast, GPT2Tokenizer, LlamaTokenizer
|
||||
from transformers import AutoTokenizer, BloomTokenizerFast, GPT2Tokenizer, LlamaTokenizer, RobertaTokenizer
|
||||
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
|
||||
|
@ -44,6 +45,8 @@ def main(args):
|
|||
initial_model = OPTActor(pretrained=args.pretrain)
|
||||
elif args.model == 'llama':
|
||||
initial_model = LlamaActor(pretrained=args.pretrain)
|
||||
elif args.model == 'roberta':
|
||||
initial_model = RoBERTaActor(pretrained=args.pretrain)
|
||||
else:
|
||||
raise ValueError(f'Unsupported actor model "{args.model}"')
|
||||
|
||||
|
@ -60,6 +63,8 @@ def main(args):
|
|||
reward_model = OPTRM(pretrained=args.rm_pretrain)
|
||||
elif rm_model_name == 'llama':
|
||||
reward_model = LlamaRM(pretrained=args.rm_pretrain)
|
||||
elif rm_model_name == 'roberta':
|
||||
reward_model = RoBERTaRM(pretrained=args.rm_pretrain)
|
||||
else:
|
||||
raise ValueError(f'Unsupported reward model "{rm_model_name}"')
|
||||
|
||||
|
@ -79,6 +84,8 @@ def main(args):
|
|||
actor = OPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
|
||||
elif args.model == 'llama':
|
||||
actor = LlamaActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
|
||||
elif args.model == 'roberta':
|
||||
actor = RoBERTaActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
|
||||
else:
|
||||
raise ValueError(f'Unsupported actor model "{args.model}"')
|
||||
|
||||
|
@ -90,6 +97,8 @@ def main(args):
|
|||
critic = OPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
|
||||
elif rm_model_name == 'llama':
|
||||
critic = LlamaCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
|
||||
elif rm_model_name == 'roberta':
|
||||
critic = RoBERTaCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
|
||||
else:
|
||||
raise ValueError(f'Unsupported reward model "{rm_model_name}"')
|
||||
|
||||
|
@ -119,6 +128,8 @@ def main(args):
|
|||
elif args.model == 'llama':
|
||||
tokenizer = LlamaTokenizer.from_pretrained(args.pretrain)
|
||||
tokenizer.eos_token = '<\s>'
|
||||
elif args.model == 'roberta':
|
||||
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
||||
else:
|
||||
raise ValueError(f'Unsupported model "{args.model}"')
|
||||
|
||||
|
@ -200,9 +211,9 @@ if __name__ == '__main__':
|
|||
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
|
||||
default='naive',
|
||||
help='strategy to use')
|
||||
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt', 'llama'])
|
||||
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt', 'llama', 'roberta'])
|
||||
parser.add_argument('--pretrain', type=str, default=None)
|
||||
parser.add_argument('--rm_model', default=None, choices=['gpt2', 'bloom', 'opt', 'llama'])
|
||||
parser.add_argument('--rm_model', default=None, choices=['gpt2', 'bloom', 'opt', 'llama', 'roberta'])
|
||||
parser.add_argument('--rm_path', type=str, default=None)
|
||||
parser.add_argument('--rm_pretrain', type=str, default=None)
|
||||
parser.add_argument('--save_path', type=str, default='actor_checkpoint_prompts')
|
||||
|
|
|
@ -11,12 +11,13 @@ from coati.models.deberta import DebertaRM
|
|||
from coati.models.gpt import GPTRM
|
||||
from coati.models.llama import LlamaRM
|
||||
from coati.models.opt import OPTRM
|
||||
from coati.models.roberta import RoBERTaRM
|
||||
from coati.trainer import RewardModelTrainer
|
||||
from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
|
||||
from coati.utils import prepare_llama_tokenizer_and_embedding
|
||||
from datasets import load_dataset
|
||||
from torch.optim import Adam
|
||||
from transformers import AutoTokenizer, BloomTokenizerFast, DebertaV2Tokenizer, LlamaTokenizer
|
||||
from transformers import AutoTokenizer, BloomTokenizerFast, DebertaV2Tokenizer, LlamaTokenizer, RobertaTokenizer
|
||||
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
||||
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
|
@ -47,6 +48,8 @@ def train(args):
|
|||
model = DebertaRM(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
|
||||
elif args.model == 'llama':
|
||||
model = LlamaRM(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
|
||||
elif args.model == 'roberta':
|
||||
model = RoBERTaRM(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
|
||||
else:
|
||||
raise ValueError(f'Unsupported model "{args.model}"')
|
||||
|
||||
|
@ -67,6 +70,8 @@ def train(args):
|
|||
tokenizer = DebertaV2Tokenizer.from_pretrained('microsoft/deberta-v3-large')
|
||||
elif args.model == 'llama':
|
||||
tokenizer = LlamaTokenizer.from_pretrained(args.pretrain)
|
||||
elif args.model == 'roberta':
|
||||
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
||||
else:
|
||||
raise ValueError(f'Unsupported model "{args.model}"')
|
||||
max_len = args.max_len
|
||||
|
@ -140,7 +145,7 @@ if __name__ == '__main__':
|
|||
parser.add_argument('--strategy',
|
||||
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
|
||||
default='naive')
|
||||
parser.add_argument('--model', choices=['gpt2', 'bloom', 'opt', 'deberta', 'llama'], default='bloom')
|
||||
parser.add_argument('--model', choices=['gpt2', 'bloom', 'opt', 'deberta', 'llama', 'roberta'], default='bloom')
|
||||
parser.add_argument('--pretrain', type=str, default=None)
|
||||
parser.add_argument('--model_path', type=str, default=None)
|
||||
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
|
||||
|
|
Loading…
Reference in New Issue