[Coati] first commit (#3283)

pull/3284/head
Fazzie-Maqianli 2023-03-28 20:25:36 +08:00 committed by GitHub
parent fd6add575d
commit b0ce5a1032
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
106 changed files with 7069 additions and 0 deletions

146
applications/Chat/.gitignore vendored Normal file
View File

@ -0,0 +1,146 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
docs/.build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# IDE
.idea/
.vscode/
# macos
*.DS_Store
#data/
docs/.build
# pytorch checkpoint
*.pt
# wandb log
example/wandb/

202
applications/Chat/LICENSE Normal file
View File

@ -0,0 +1,202 @@
Copyright 2021- HPC-AI Technology Inc. All rights reserved.
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2021- HPC-AI Technology Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

269
applications/Chat/README.md Normal file
View File

@ -0,0 +1,269 @@
<h1 align="center">
<span>Coati - ColossalAI Talking Intelligence</span>
<img width="auto" height="50px", src="assets/logo_coati.png"/>
</h1>
## Table of Contents
- [Table of Contents](#table-of-contents)
- [What is Coati ?](#what-is-coati-)
- [Online demo](#online-demo)
- [Install](#install)
- [Install the environment](#install-the-environment)
- [Install the Transformers](#install-the-transformers)
- [How to use?](#how-to-use)
- [Supervised datasets collection](#supervised-datasets-collection)
- [Stage1 - Supervised instructs tuning](#stage1---supervised-instructs-tuning)
- [Stage2 - Training reward model](#stage2---training-reward-model)
- [Stage3 - Training model with reinforcement learning by human feedback](#stage3---training-model-with-reinforcement-learning-by-human-feedback)
- [Coati7B examples](#coati7b-examples)
- [FAQ](#faq)
- [How to save/load checkpoint](#how-to-saveload-checkpoint)
- [The Plan](#the-plan)
- [Real-time progress](#real-time-progress)
- [Invitation to open-source contribution](#invitation-to-open-source-contribution)
- [Quick Preview](#quick-preview)
- [Authors](#authors)
- [Citations](#citations)
- [Licenses](#licenses)
---
## What is Coati ?
Coati is a large language model developed by Colossal-AI, which is also a unified large language model framework that has implemented the following functions
- Supports comprehensive large-model training acceleration capabilities for ColossalAI, without requiring knowledge of complex distributed training algorithms
- Supervised datasets collection
- Supervised insturcts fine-tuning
- Training reward model
- Reinforcement learning with human feedback
- Quantization inference
- Fast model deploying
- Perfectly integration with the Hugging Face ecosystem, high degree of model customization
More details can be found in the [blog](https://www.hpc-ai.tech/blog/colossal-ai-chatgpt).
<p align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/applications/chatgpt/chatgpt.png" width=700/>
</p>
## Online demo
You can experience the performance of Coati7B on this page.
[chat.colossalai.org](https://chat.colossalai.org/)
> Warning: Due to model and dataset size limitations, Coati is just a baby model, Coati7B may output incorrect information and lack the ability for multi-turn dialogue. There is still significant room for improvement.
## Install
### Install the environment
```shell
conda creat -n coati
conda activate coati
pip install .
```
### Install the Transformers
Given Hugging Face hasn't officially supported the LLaMA models, We fork a branch of Transformers that can be compatible with our code
```shell
git clone https://github.com/hpcaitech/transformers
cd transformers
pip install .
```
## How to use?
### Supervised datasets collection
we colllected 104K bilingual dataset of Chinese and English, and you can find the datasets in this repo
Here is how we collected the data
<p align="center">
<img src="assets/data-collect.png" width=500/>
</p>
### Stage1 - Supervised instructs tuning
Stage1 is supervised instructs fine-tuning, which uses the datasets mentioned earlier to fine-tune the model
you can run the `examples/train_sft.sh` to start a supervised instructs fine-tuning
```
torchrun --standalone --nproc_per_node=4 train_sft.py \
--pretrain "/path/to/LLaMa-7B/" \
--model 'llama' \
--strategy colossalai_zero2 \
--log_interval 10 \
--save_path /path/to/Coati-7B \
--dataset /path/to/data.json \
--batch_size 4 \
--accimulation_steps 8 \
--lr 2e-5 \
--max_datasets_size 512 \
--max_epochs 1 \
```
### Stage2 - Training reward model
Stage2 trains a reward model, which obtains corresponding scores by manually ranking different outputs for the same prompt and supervises the training of the reward model
you can run the `examples/train_rm.sh` to start a reward model training
```
torchrun --standalone --nproc_per_node=4 train_reward_model.py
--pretrain "/path/to/LLaMa-7B/" \
--model 'llama' \
--strategy colossalai_zero2 \
--loss_fn 'log_exp'\
--save_path 'rmstatic.pt' \
```
### Stage3 - Training model with reinforcement learning by human feedback
Stage3 uses reinforcement learning algorithm, which is the most complex part of the training process:
<p align="center">
<img src="assets/stage-3.jpeg" width=500/>
</p>
you can run the `examples/train_prompts.sh` to start training PPO with human feedback
```
torchrun --standalone --nproc_per_node=4 train_prompts.py prompts.csv \
--pretrain "/path/to/LLaMa-7B/" \
--model 'llama' \
--strategy colossalai_zero2
```
For more details, see `examples/`.
We also support training reward model with true-world data. See `examples/train_reward_model.py`.
## Coati7B examples
## FAQ
### How to save/load checkpoint
We have integrated the Transformers save and load pipeline, allowing users to freely call Hugging Face's language models and save them in the HF format.
```
from coati.models.llama import LlamaLM
from coati.trainer import SFTTrainer
model = LlamaLM(pretrained=args.pretrain)
tokenizer = AutoTokenizer.from_pretrained(args.pretrain)
trainer = SFTTrainer(model=model,
strategy=strategy,
optim=optim,
train_dataloader=train_dataloader,
eval_dataloader=eval_dataloader,
batch_size=args.batch_size,
max_epochs=args.max_epochs,
accimulation_steps = args.accimulation_steps
)
trainer.fit()
trainer.save_model(path=args.save_path, only_rank0=True, tokenizer=tokenizer)
```
## The Plan
- [x] implement PPO fine-tuning
- [x] implement training reward model
- [x] support LoRA
- [x] support inference
- [x] open source the reward model weight
- [x] support llama from [facebook](https://github.com/facebookresearch/llama)
- [x] implement PPO-ptx fine-tuning
- [ ] integrate with Ray
- [ ] support more RL paradigms, like Implicit Language Q-Learning (ILQL),
- [ ] support chain of throught by [langchain](https://github.com/hwchase17/langchain)
### Real-time progress
You will find our progress in github project broad
[Coati](https://github.com/orgs/hpcaitech/projects/17/views/1)
## Invitation to open-source contribution
Referring to the successful attempts of [BLOOM](https://bigscience.huggingface.co/) and [Stable Diffusion](https://en.wikipedia.org/wiki/Stable_Diffusion), any and all developers and partners with computing powers, datasets, models are welcome to join and build the Colossal-AI community, making efforts towards the era of big AI models from the starting point of replicating ChatGPT!
You may contact us or participate in the following ways:
1. [Leaving a Star ⭐](https://github.com/hpcaitech/ColossalAI/stargazers) to show your like and support. Thanks!
2. Posting an [issue](https://github.com/hpcaitech/ColossalAI/issues/new/choose), or submitting a PR on GitHub follow the guideline in [Contributing](https://github.com/hpcaitech/ColossalAI/blob/main/CONTRIBUTING.md).
3. Join the Colossal-AI community on
[Slack](https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-z7b26eeb-CBp7jouvu~r0~lcFzX832w),
and [WeChat(微信)](https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png "qrcode") to share your ideas.
4. Send your official proposal to email contact@hpcaitech.com
Thanks so much to all of our amazing contributors!
## Quick Preview
<p id="ChatGPT_scaling" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/applications/chatgpt/ChatGPT%20scaling.png" width=800/>
</p>
- Up to 7.73 times faster for single server training and 1.42 times faster for single-GPU inference
<p id="ChatGPT-1GPU" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/applications/chatgpt/ChatGPT-1GPU.jpg" width=450/>
</p>
- Up to 10.3x growth in model capacity on one GPU
- A mini demo training process requires only 1.62GB of GPU memory (any consumer-grade GPU)
<p id="inference" align="center">
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/applications/chatgpt/LoRA%20data.jpg" width=600/>
</p>
- Increase the capacity of the fine-tuning model by up to 3.7 times on a single GPU
- Keep in a sufficiently high running speed
## Authors
Coati is developed by ColossalAI Team: [Fazzie](https://fazzie-key.cool/about/index.html), [FrankLeeeee](https://github.com/FrankLeeeee), [BlueRum](https://github.com/ht-zhou), [ver217](https://github.com/ver217)
The Phd student [Zangwei Zheng](https://github.com/zhengzangw) and [Xue Fuzhao](https://github.com/XueFuzhao) also contributed a lot to this project.
## Citations
```bibtex
@article{Hu2021LoRALA,
title = {LoRA: Low-Rank Adaptation of Large Language Models},
author = {Edward J. Hu and Yelong Shen and Phillip Wallis and Zeyuan Allen-Zhu and Yuanzhi Li and Shean Wang and Weizhu Chen},
journal = {ArXiv},
year = {2021},
volume = {abs/2106.09685}
}
@article{ouyang2022training,
title={Training language models to follow instructions with human feedback},
author={Ouyang, Long and Wu, Jeff and Jiang, Xu and Almeida, Diogo and Wainwright, Carroll L and Mishkin, Pamela and Zhang, Chong and Agarwal, Sandhini and Slama, Katarina and Ray, Alex and others},
journal={arXiv preprint arXiv:2203.02155},
year={2022}
}
@article{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
journal={arXiv preprint arXiv:2302.13971},
year={2023}
}
@misc{alpaca,
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
title = {Stanford Alpaca: An Instruction-following LLaMA model},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
```
## Licenses
Coati is licensed under the [Apache 2.0 License](LICENSE).

Binary file not shown.

After

Width:  |  Height:  |  Size: 401 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 640 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 370 KiB

View File

@ -0,0 +1,94 @@
# Benchmarks
## Benchmark GPT on dummy prompt data
We provide various GPT models (string in parentheses is the corresponding model name used in this script):
- GPT2-S (s)
- GPT2-M (m)
- GPT2-L (l)
- GPT2-XL (xl)
- GPT2-4B (4b)
- GPT2-6B (6b)
- GPT2-8B (8b)
- GPT2-10B (10b)
- GPT2-12B (12b)
- GPT2-15B (15b)
- GPT2-18B (18b)
- GPT2-20B (20b)
- GPT2-24B (24b)
- GPT2-28B (28b)
- GPT2-32B (32b)
- GPT2-36B (36b)
- GPT2-40B (40b)
- GPT3 (175b)
We also provide various training strategies:
- ddp: torch DDP
- colossalai_gemini: ColossalAI GeminiDDP with `placement_policy="cuda"`, like zero3
- colossalai_gemini_cpu: ColossalAI GeminiDDP with `placement_policy="cpu"`, like zero3-offload
- colossalai_zero2: ColossalAI zero2
- colossalai_zero2_cpu: ColossalAI zero2-offload
- colossalai_zero1: ColossalAI zero1
- colossalai_zero1_cpu: ColossalAI zero1-offload
We only support `torchrun` to launch now. E.g.
```shell
# run GPT2-S on single-node single-GPU with min batch size
torchrun --standalone --nproc_per_node 1 benchmark_gpt_dummy.py --model s --strategy ddp --experience_batch_size 1 --train_batch_size 1
# run GPT2-XL on single-node 4-GPU
torchrun --standalone --nproc_per_node 4 benchmark_gpt_dummy.py --model xl --strategy colossalai_zero2
# run GPT3 on 8-node 8-GPU
torchrun --nnodes 8 --nproc_per_node 8 \
--rdzv_id=$JOB_ID --rdzv_backend=c10d --rdzv_endpoint=$HOST_NODE_ADDR \
benchmark_gpt_dummy.py --model 175b --strategy colossalai_gemini
```
> ⚠ Batch sizes in CLI args and outputed throughput/TFLOPS are all values of per GPU.
In this benchmark, we assume the model architectures/sizes of actor and critic are the same for simplicity. But in practice, to reduce training cost, we may use a smaller critic.
We also provide a simple shell script to run a set of benchmarks. But it only supports benchmark on single node. However, it's easy to run on multi-nodes by modifying launch command in this script.
Usage:
```shell
# run for GPUS=(1 2 4 8) x strategy=("ddp" "colossalai_zero2" "colossalai_gemini" "colossalai_zero2_cpu" "colossalai_gemini_cpu") x model=("s" "m" "l" "xl" "2b" "4b" "6b" "8b" "10b") x batch_size=(1 2 4 8 16 32 64 128 256)
./benchmark_gpt_dummy.sh
# run for GPUS=2 x strategy=("ddp" "colossalai_zero2" "colossalai_gemini" "colossalai_zero2_cpu" "colossalai_gemini_cpu") x model=("s" "m" "l" "xl" "2b" "4b" "6b" "8b" "10b") x batch_size=(1 2 4 8 16 32 64 128 256)
./benchmark_gpt_dummy.sh 2
# run for GPUS=2 x strategy=ddp x model=("s" "m" "l" "xl" "2b" "4b" "6b" "8b" "10b") x batch_size=(1 2 4 8 16 32 64 128 256)
./benchmark_gpt_dummy.sh 2 ddp
# run for GPUS=2 x strategy=ddp x model=l x batch_size=(1 2 4 8 16 32 64 128 256)
./benchmark_gpt_dummy.sh 2 ddp l
```
## Benchmark OPT with LoRA on dummy prompt data
We provide various OPT models (string in parentheses is the corresponding model name used in this script):
- OPT-125M (125m)
- OPT-350M (350m)
- OPT-700M (700m)
- OPT-1.3B (1.3b)
- OPT-2.7B (2.7b)
- OPT-3.5B (3.5b)
- OPT-5.5B (5.5b)
- OPT-6.7B (6.7b)
- OPT-10B (10b)
- OPT-13B (13b)
We only support `torchrun` to launch now. E.g.
```shell
# run OPT-125M with no lora (lora_rank=0) on single-node single-GPU with min batch size
torchrun --standalone --nproc_per_node 1 benchmark_opt_lora_dummy.py --model 125m --strategy ddp --experience_batch_size 1 --train_batch_size 1 --lora_rank 0
# run OPT-350M with lora_rank=4 on single-node 4-GPU
torchrun --standalone --nproc_per_node 4 benchmark_opt_lora_dummy.py --model 350m --strategy colossalai_zero2 --lora_rank 4
```
> ⚠ Batch sizes in CLI args and outputed throughput/TFLOPS are all values of per GPU.
In this benchmark, we assume the model architectures/sizes of actor and critic are the same for simplicity. But in practice, to reduce training cost, we may use a smaller critic.

View File

@ -0,0 +1,184 @@
import argparse
from copy import deepcopy
import torch
import torch.distributed as dist
import torch.nn as nn
from coati.models.base import RewardModel
from coati.models.gpt import GPTActor, GPTCritic
from coati.trainer import PPOTrainer
from coati.trainer.callbacks import PerformanceEvaluator
from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, Strategy
from torch.optim import Adam
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from colossalai.nn.optimizer import HybridAdam
def get_model_numel(model: nn.Module, strategy: Strategy) -> int:
numel = sum(p.numel() for p in model.parameters())
if isinstance(strategy, ColossalAIStrategy) and strategy.stage == 3 and strategy.shard_init:
numel *= dist.get_world_size()
return numel
def preprocess_batch(samples) -> dict:
input_ids = torch.stack(samples)
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
return {'input_ids': input_ids, 'attention_mask': attention_mask}
def print_rank_0(*args, **kwargs) -> None:
if dist.get_rank() == 0:
print(*args, **kwargs)
def print_model_numel(model_dict: dict) -> None:
B = 1024**3
M = 1024**2
K = 1024
outputs = ''
for name, numel in model_dict.items():
outputs += f'{name}: '
if numel >= B:
outputs += f'{numel / B:.2f} B\n'
elif numel >= M:
outputs += f'{numel / M:.2f} M\n'
elif numel >= K:
outputs += f'{numel / K:.2f} K\n'
else:
outputs += f'{numel}\n'
print_rank_0(outputs)
def get_gpt_config(model_name: str) -> GPT2Config:
model_map = {
's': GPT2Config(),
'm': GPT2Config(n_embd=1024, n_layer=24, n_head=16),
'l': GPT2Config(n_embd=1280, n_layer=36, n_head=20),
'xl': GPT2Config(n_embd=1600, n_layer=48, n_head=25),
'2b': GPT2Config(n_embd=2048, n_layer=40, n_head=16),
'4b': GPT2Config(n_embd=2304, n_layer=64, n_head=16),
'6b': GPT2Config(n_embd=4096, n_layer=30, n_head=16),
'8b': GPT2Config(n_embd=4096, n_layer=40, n_head=16),
'10b': GPT2Config(n_embd=4096, n_layer=50, n_head=16),
'12b': GPT2Config(n_embd=4096, n_layer=60, n_head=16),
'15b': GPT2Config(n_embd=4096, n_layer=78, n_head=16),
'18b': GPT2Config(n_embd=4096, n_layer=90, n_head=16),
'20b': GPT2Config(n_embd=8192, n_layer=25, n_head=16),
'24b': GPT2Config(n_embd=8192, n_layer=30, n_head=16),
'28b': GPT2Config(n_embd=8192, n_layer=35, n_head=16),
'32b': GPT2Config(n_embd=8192, n_layer=40, n_head=16),
'36b': GPT2Config(n_embd=8192, n_layer=45, n_head=16),
'40b': GPT2Config(n_embd=8192, n_layer=50, n_head=16),
'175b': GPT2Config(n_positions=2048, n_embd=12288, n_layer=96, n_head=96),
}
try:
return model_map[model_name]
except KeyError:
raise ValueError(f'Unknown model "{model_name}"')
def main(args):
if args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda', initial_scale=2**5)
elif args.strategy == 'colossalai_gemini_cpu':
strategy = ColossalAIStrategy(stage=3, placement_policy='cpu', initial_scale=2**5)
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
elif args.strategy == 'colossalai_zero2_cpu':
strategy = ColossalAIStrategy(stage=2, placement_policy='cpu')
elif args.strategy == 'colossalai_zero1':
strategy = ColossalAIStrategy(stage=1, placement_policy='cuda')
elif args.strategy == 'colossalai_zero1_cpu':
strategy = ColossalAIStrategy(stage=1, placement_policy='cpu')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
model_config = get_gpt_config(args.model)
with strategy.model_init_context():
actor = GPTActor(config=model_config).cuda()
critic = GPTCritic(config=model_config).cuda()
initial_model = deepcopy(actor).cuda()
reward_model = RewardModel(deepcopy(critic.model), deepcopy(critic.value_head)).cuda()
actor_numel = get_model_numel(actor, strategy)
critic_numel = get_model_numel(critic, strategy)
initial_model_numel = get_model_numel(initial_model, strategy)
reward_model_numel = get_model_numel(reward_model, strategy)
print_model_numel({
'Actor': actor_numel,
'Critic': critic_numel,
'Initial model': initial_model_numel,
'Reward model': reward_model_numel
})
performance_evaluator = PerformanceEvaluator(actor_numel,
critic_numel,
initial_model_numel,
reward_model_numel,
enable_grad_checkpoint=False,
ignore_episodes=1)
if args.strategy.startswith('colossalai'):
actor_optim = HybridAdam(actor.parameters(), lr=5e-6)
critic_optim = HybridAdam(critic.parameters(), lr=5e-6)
else:
actor_optim = Adam(actor.parameters(), lr=5e-6)
critic_optim = Adam(critic.parameters(), lr=5e-6)
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare(
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model)
trainer = PPOTrainer(strategy,
actor,
critic,
reward_model,
initial_model,
actor_optim,
critic_optim,
max_epochs=args.max_epochs,
train_batch_size=args.train_batch_size,
experience_batch_size=args.experience_batch_size,
tokenizer=preprocess_batch,
max_length=512,
do_sample=True,
temperature=1.0,
top_k=50,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
callbacks=[performance_evaluator])
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 400), device=torch.cuda.current_device())
trainer.fit(random_prompts,
num_episodes=args.num_episodes,
max_timesteps=args.max_timesteps,
update_timesteps=args.update_timesteps)
print_rank_0(f'Peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.2f} GB')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='s')
parser.add_argument('--strategy',
choices=[
'ddp', 'colossalai_gemini', 'colossalai_gemini_cpu', 'colossalai_zero2',
'colossalai_zero2_cpu', 'colossalai_zero1', 'colossalai_zero1_cpu'
],
default='ddp')
parser.add_argument('--num_episodes', type=int, default=3)
parser.add_argument('--max_timesteps', type=int, default=8)
parser.add_argument('--update_timesteps', type=int, default=8)
parser.add_argument('--max_epochs', type=int, default=3)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--experience_batch_size', type=int, default=8)
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,45 @@
#!/usr/bin/env bash
# Usage: $0 <?number-of-gpus> <?strategy> <?model>
set -xu
BASE=$(realpath $(dirname $0))
PY_SCRIPT=${BASE}/benchmark_gpt_dummy.py
export OMP_NUM_THREADS=8
function tune_batch_size() {
# we found when experience batch size is equal to train batch size
# peak CUDA memory usage of making experience phase is less than or equal to that of training phase
# thus, experience batch size can be larger than or equal to train batch size
for bs in 1 2 4 8 16 32 64 128 256; do
torchrun --standalone --nproc_per_node $1 $PY_SCRIPT --model $2 --strategy $3 --experience_batch_size $bs --train_batch_size $bs || return 1
done
}
if [ $# -eq 0 ]; then
num_gpus=(1 2 4 8)
else
num_gpus=($1)
fi
if [ $# -le 1 ]; then
strategies=("ddp" "colossalai_zero2" "colossalai_gemini" "colossalai_zero2_cpu" "colossalai_gemini_cpu")
else
strategies=($2)
fi
if [ $# -le 2 ]; then
models=("s" "m" "l" "xl" "2b" "4b" "6b" "8b" "10b")
else
models=($3)
fi
for num_gpu in ${num_gpus[@]}; do
for strategy in ${strategies[@]}; do
for model in ${models[@]}; do
tune_batch_size $num_gpu $model $strategy || break
done
done
done

View File

@ -0,0 +1,179 @@
import argparse
from copy import deepcopy
import torch
import torch.distributed as dist
import torch.nn as nn
from coati.models.base import RewardModel
from coati.models.opt import OPTActor, OPTCritic
from coati.trainer import PPOTrainer
from coati.trainer.callbacks import PerformanceEvaluator
from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, Strategy
from torch.optim import Adam
from transformers import AutoTokenizer
from transformers.models.opt.configuration_opt import OPTConfig
from colossalai.nn.optimizer import HybridAdam
def get_model_numel(model: nn.Module, strategy: Strategy) -> int:
numel = sum(p.numel() for p in model.parameters())
if isinstance(strategy, ColossalAIStrategy) and strategy.stage == 3 and strategy.shard_init:
numel *= dist.get_world_size()
return numel
def preprocess_batch(samples) -> dict:
input_ids = torch.stack(samples)
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
return {'input_ids': input_ids, 'attention_mask': attention_mask}
def print_rank_0(*args, **kwargs) -> None:
if dist.get_rank() == 0:
print(*args, **kwargs)
def print_model_numel(model_dict: dict) -> None:
B = 1024**3
M = 1024**2
K = 1024
outputs = ''
for name, numel in model_dict.items():
outputs += f'{name}: '
if numel >= B:
outputs += f'{numel / B:.2f} B\n'
elif numel >= M:
outputs += f'{numel / M:.2f} M\n'
elif numel >= K:
outputs += f'{numel / K:.2f} K\n'
else:
outputs += f'{numel}\n'
print_rank_0(outputs)
def get_gpt_config(model_name: str) -> OPTConfig:
model_map = {
'125m': OPTConfig.from_pretrained('facebook/opt-125m'),
'350m': OPTConfig(hidden_size=1024, ffn_dim=4096, num_hidden_layers=24, num_attention_heads=16),
'700m': OPTConfig(hidden_size=1280, ffn_dim=5120, num_hidden_layers=36, num_attention_heads=20),
'1.3b': OPTConfig.from_pretrained('facebook/opt-1.3b'),
'2.7b': OPTConfig.from_pretrained('facebook/opt-2.7b'),
'3.5b': OPTConfig(hidden_size=3072, ffn_dim=12288, num_hidden_layers=32, num_attention_heads=32),
'5.5b': OPTConfig(hidden_size=3840, ffn_dim=15360, num_hidden_layers=32, num_attention_heads=32),
'6.7b': OPTConfig.from_pretrained('facebook/opt-6.7b'),
'10b': OPTConfig(hidden_size=5120, ffn_dim=20480, num_hidden_layers=32, num_attention_heads=32),
'13b': OPTConfig.from_pretrained('facebook/opt-13b'),
}
try:
return model_map[model_name]
except KeyError:
raise ValueError(f'Unknown model "{model_name}"')
def main(args):
if args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda', initial_scale=2**5)
elif args.strategy == 'colossalai_gemini_cpu':
strategy = ColossalAIStrategy(stage=3, placement_policy='cpu', initial_scale=2**5)
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
elif args.strategy == 'colossalai_zero2_cpu':
strategy = ColossalAIStrategy(stage=2, placement_policy='cpu')
elif args.strategy == 'colossalai_zero1':
strategy = ColossalAIStrategy(stage=1, placement_policy='cuda')
elif args.strategy == 'colossalai_zero1_cpu':
strategy = ColossalAIStrategy(stage=1, placement_policy='cpu')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
torch.cuda.set_per_process_memory_fraction(args.cuda_mem_frac)
model_config = get_gpt_config(args.model)
with strategy.model_init_context():
actor = OPTActor(config=model_config, lora_rank=args.lora_rank).cuda()
critic = OPTCritic(config=model_config, lora_rank=args.lora_rank).cuda()
initial_model = deepcopy(actor).cuda()
reward_model = RewardModel(deepcopy(critic.model), deepcopy(critic.value_head)).cuda()
actor_numel = get_model_numel(actor, strategy)
critic_numel = get_model_numel(critic, strategy)
initial_model_numel = get_model_numel(initial_model, strategy)
reward_model_numel = get_model_numel(reward_model, strategy)
print_model_numel({
'Actor': actor_numel,
'Critic': critic_numel,
'Initial model': initial_model_numel,
'Reward model': reward_model_numel
})
performance_evaluator = PerformanceEvaluator(actor_numel,
critic_numel,
initial_model_numel,
reward_model_numel,
enable_grad_checkpoint=False,
ignore_episodes=1)
if args.strategy.startswith('colossalai'):
actor_optim = HybridAdam(actor.parameters(), lr=5e-6)
critic_optim = HybridAdam(critic.parameters(), lr=5e-6)
else:
actor_optim = Adam(actor.parameters(), lr=5e-6)
critic_optim = Adam(critic.parameters(), lr=5e-6)
tokenizer = AutoTokenizer.from_pretrained('facebook/opt-350m')
tokenizer.pad_token = tokenizer.eos_token
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare(
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model)
trainer = PPOTrainer(strategy,
actor,
critic,
reward_model,
initial_model,
actor_optim,
critic_optim,
max_epochs=args.max_epochs,
train_batch_size=args.train_batch_size,
experience_batch_size=args.experience_batch_size,
tokenizer=preprocess_batch,
max_length=512,
do_sample=True,
temperature=1.0,
top_k=50,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
callbacks=[performance_evaluator])
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 400), device=torch.cuda.current_device())
trainer.fit(random_prompts,
num_episodes=args.num_episodes,
max_timesteps=args.max_timesteps,
update_timesteps=args.update_timesteps)
print_rank_0(f'Peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.2f} GB')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='125m')
parser.add_argument('--strategy',
choices=[
'ddp', 'colossalai_gemini', 'colossalai_gemini_cpu', 'colossalai_zero2',
'colossalai_zero2_cpu', 'colossalai_zero1', 'colossalai_zero1_cpu'
],
default='ddp')
parser.add_argument('--num_episodes', type=int, default=3)
parser.add_argument('--max_timesteps', type=int, default=8)
parser.add_argument('--update_timesteps', type=int, default=8)
parser.add_argument('--max_epochs', type=int, default=3)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--experience_batch_size', type=int, default=8)
parser.add_argument('--lora_rank', type=int, default=4)
parser.add_argument('--cuda_mem_frac', type=float, default=1.0)
args = parser.parse_args()
main(args)

View File

View File

@ -0,0 +1,9 @@
from .prompt_dataset import PromptDataset
from .reward_dataset import HhRlhfDataset, RmStaticDataset
from .sft_dataset import DataCollatorForSupervisedDataset, SFTDataset, SupervisedDataset
from .utils import is_rank_0
__all__ = [
'RmStaticDataset', 'HhRlhfDataset', 'is_rank_0', 'SFTDataset', 'SupervisedDataset',
'DataCollatorForSupervisedDataset', 'PromptDataset'
]

View File

@ -0,0 +1,46 @@
import copy
import random
from dataclasses import dataclass, field
from typing import Callable, Dict, Sequence
import torch
import torch.distributed as dist
import transformers
from torch.utils.data import Dataset
from tqdm import tqdm
from colossalai.logging import get_dist_logger
from .utils import is_rank_0, jload
logger = get_dist_logger()
class PromptDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer, max_datasets_size: int = None):
super(PromptDataset, self).__init__()
self.prompt = []
logger.info("Loading data...")
list_data_dict = jload(data_path)
logger.info(f"Loaded {len(list_data_dict)} examples.")
if max_datasets_size is not None:
logger.info(f"Limiting dataset to {max_datasets_size} examples.")
list_data_dict = list_data_dict[:max_datasets_size]
for data_dict in list_data_dict:
token = tokenizer(data_dict["instruction"],
return_tensors='pt',
max_length=96,
padding='max_length',
truncation=True)
for idx in token['input_ids']:
self.prompt.append(idx.to(torch.cuda.current_device()))
def __len__(self):
return len(self.prompt)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return self.prompt[i]

View File

@ -0,0 +1,112 @@
from typing import Callable
from torch.utils.data import Dataset
from tqdm import tqdm
from .utils import is_rank_0
# Dahaos/rm-static
class RmStaticDataset(Dataset):
"""
Dataset for reward model
Args:
dataset: dataset for reward model
tokenizer: tokenizer for reward model
max_length: max length of input
special_token: special token at the end of sentence
"""
def __init__(self, dataset, tokenizer: Callable, max_length: int, special_token=None) -> None:
super().__init__()
self.chosen = []
self.reject = []
if special_token is None:
self.end_token = tokenizer.eos_token
else:
self.end_token = special_token
for data in tqdm(dataset, disable=not is_rank_0()):
prompt = data['prompt']
chosen = prompt + data['chosen'] + self.end_token
chosen_token = tokenizer(chosen,
max_length=max_length,
padding="max_length",
truncation=True,
return_tensors="pt")
self.chosen.append({
"input_ids": chosen_token['input_ids'],
"attention_mask": chosen_token['attention_mask']
})
reject = prompt + data['rejected'] + self.end_token
reject_token = tokenizer(reject,
max_length=max_length,
padding="max_length",
truncation=True,
return_tensors="pt")
self.reject.append({
"input_ids": reject_token['input_ids'],
"attention_mask": reject_token['attention_mask']
})
def __len__(self):
length = len(self.chosen)
return length
def __getitem__(self, idx):
return self.chosen[idx]["input_ids"], self.chosen[idx]["attention_mask"], self.reject[idx][
"input_ids"], self.reject[idx]["attention_mask"]
# Anthropic/hh-rlhf
class HhRlhfDataset(Dataset):
"""
Dataset for reward model
Args:
dataset: dataset for reward model
tokenizer: tokenizer for reward model
max_length: max length of input
special_token: special token at the end of sentence
"""
def __init__(self, dataset, tokenizer: Callable, max_length: int, special_token=None) -> None:
super().__init__()
self.chosen = []
self.reject = []
if special_token is None:
self.end_token = tokenizer.eos_token
else:
self.end_token = special_token
for data in tqdm(dataset, disable=not is_rank_0()):
chosen = data['chosen'] + self.end_token
chosen_token = tokenizer(chosen,
max_length=max_length,
padding="max_length",
truncation=True,
return_tensors="pt")
self.chosen.append({
"input_ids": chosen_token['input_ids'],
"attention_mask": chosen_token['attention_mask']
})
reject = data['rejected'] + self.end_token
reject_token = tokenizer(reject,
max_length=max_length,
padding="max_length",
truncation=True,
return_tensors="pt")
self.reject.append({
"input_ids": reject_token['input_ids'],
"attention_mask": reject_token['attention_mask']
})
def __len__(self):
length = len(self.chosen)
return length
def __getitem__(self, idx):
return self.chosen[idx]["input_ids"], self.chosen[idx]["attention_mask"], self.reject[idx][
"input_ids"], self.reject[idx]["attention_mask"]

View File

@ -0,0 +1,169 @@
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import random
from dataclasses import dataclass, field
from typing import Callable, Dict, Sequence
import torch
import torch.distributed as dist
import transformers
from torch.utils.data import Dataset
from tqdm import tqdm
from colossalai.logging import get_dist_logger
from .utils import is_rank_0, jload
logger = get_dist_logger()
IGNORE_INDEX = -100
PROMPT_DICT = {
"prompt_input":
("Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"),
"prompt_no_input": ("Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"),
}
class SFTDataset(Dataset):
"""
Dataset for sft model
Args:
dataset: dataset for supervised model
tokenizer: tokenizer for supervised model
max_length: max length of input
"""
def __init__(self, dataset, tokenizer: Callable, max_length: int = 512) -> None:
super().__init__()
# self.prompts = []
self.input_ids = []
for data in tqdm(dataset, disable=not is_rank_0()):
prompt = data['prompt'] + data['completion'] + "<|endoftext|>"
prompt_token = tokenizer(prompt,
max_length=max_length,
padding="max_length",
truncation=True,
return_tensors="pt")
# self.prompts.append(prompt_token)s
self.input_ids.append(prompt_token)
self.labels = copy.deepcopy(self.input_ids)
def __len__(self):
length = len(self.prompts)
return length
def __getitem__(self, idx):
# dict(input_ids=self.input_ids[i], labels=self.labels[i])
return dict(input_ids=self.input_ids[idx], labels=self.labels[idx])
# return dict(self.prompts[idx], self.prompts[idx])
def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
"""Tokenize a list of strings."""
tokenized_list = [
tokenizer(
text,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
) for text in strings
]
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
input_ids_lens = labels_lens = [
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
]
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
def preprocess(
sources: Sequence[str],
targets: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
"""Preprocess the data by tokenizing."""
examples = [s + t for s, t in zip(sources, targets)]
examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)]
input_ids = examples_tokenized["input_ids"]
labels = copy.deepcopy(input_ids)
for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]):
label[:source_len] = IGNORE_INDEX
return dict(input_ids=input_ids, labels=labels)
class SupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer, max_datasets_size: int = None):
super(SupervisedDataset, self).__init__()
logger.info("Loading data...")
list_data_dict = jload(data_path)
logger.info(f"Loaded {len(list_data_dict)} examples.")
if max_datasets_size is not None:
logger.info(f"Limiting dataset to {max_datasets_size} examples.")
list_data_dict = list_data_dict[:max_datasets_size]
logger.info("Formatting inputs...")
prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"]
sources = [
prompt_input.format_map(example) if example.get("input", "") != "" else prompt_no_input.format_map(example)
for example in list_data_dict
]
targets = [f"{example['output']}{tokenizer.eos_token}" for example in list_data_dict]
logger.info("Tokenizing inputs... This may take some time...")
data_dict = preprocess(sources, targets, tokenizer)
self.input_ids = data_dict["input_ids"]
self.labels = data_dict["labels"]
def __len__(self):
return len(self.input_ids)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
return dict(input_ids=self.input_ids[i], labels=self.labels[i])
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids,
batch_first=True,
padding_value=self.tokenizer.pad_token_id)
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
return dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)

View File

@ -0,0 +1,22 @@
import io
import json
import torch.distributed as dist
def is_rank_0() -> bool:
return not dist.is_initialized() or dist.get_rank() == 0
def _make_r_io_base(f, mode: str):
if not isinstance(f, io.IOBase):
f = open(f, mode=mode)
return f
def jload(f, mode="r"):
"""Load a .json file into a dictionary."""
f = _make_r_io_base(f, mode)
jdict = json.load(f)
f.close()
return jdict

View File

@ -0,0 +1,4 @@
from .base import Experience, ExperienceMaker
from .naive import NaiveExperienceMaker
__all__ = ['Experience', 'ExperienceMaker', 'NaiveExperienceMaker']

View File

@ -0,0 +1,77 @@
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn
from coati.models.base import Actor
@dataclass
class Experience:
"""Experience is a batch of data.
These data should have the the sequence length and number of actions.
Left padding for sequences is applied.
Shapes of each tensor:
sequences: (B, S)
action_log_probs: (B, A)
values: (B)
reward: (B)
advatanges: (B)
attention_mask: (B, S)
action_mask: (B, A)
"A" is the number of actions.
"""
sequences: torch.Tensor
action_log_probs: torch.Tensor
values: torch.Tensor
reward: torch.Tensor
advantages: torch.Tensor
attention_mask: Optional[torch.LongTensor]
action_mask: Optional[torch.BoolTensor]
@torch.no_grad()
def to_device(self, device: torch.device) -> None:
self.sequences = self.sequences.to(device)
self.action_log_probs = self.action_log_probs.to(device)
self.values = self.values.to(device)
self.reward = self.reward.to(device)
self.advantages = self.advantages.to(device)
if self.attention_mask is not None:
self.attention_mask = self.attention_mask.to(device)
if self.action_mask is not None:
self.action_mask = self.action_mask.to(device)
def pin_memory(self):
self.sequences = self.sequences.pin_memory()
self.action_log_probs = self.action_log_probs.pin_memory()
self.values = self.values.pin_memory()
self.reward = self.reward.pin_memory()
self.advantages = self.advantages.pin_memory()
if self.attention_mask is not None:
self.attention_mask = self.attention_mask.pin_memory()
if self.action_mask is not None:
self.action_mask = self.action_mask.pin_memory()
return self
class ExperienceMaker(ABC):
def __init__(self,
actor: Actor,
critic: nn.Module,
reward_model: nn.Module,
initial_model: Actor,
kl_coef: float = 0.1) -> None:
super().__init__()
self.actor = actor
self.critic = critic
self.reward_model = reward_model
self.initial_model = initial_model
self.kl_coef = kl_coef
@abstractmethod
def make_experience(self, input_ids: torch.Tensor, **generate_kwargs) -> Experience:
pass

View File

@ -0,0 +1,35 @@
import torch
from coati.models.utils import compute_reward, normalize
from .base import Experience, ExperienceMaker
class NaiveExperienceMaker(ExperienceMaker):
"""
Naive experience maker.
"""
@torch.no_grad()
def make_experience(self, input_ids: torch.Tensor, **generate_kwargs) -> Experience:
self.actor.eval()
self.critic.eval()
self.initial_model.eval()
self.reward_model.eval()
sequences, attention_mask, action_mask = self.actor.generate(input_ids,
return_action_mask=True,
**generate_kwargs)
num_actions = action_mask.size(1)
action_log_probs = self.actor(sequences, num_actions, attention_mask)
base_action_log_probs = self.initial_model(sequences, num_actions, attention_mask)
value = self.critic(sequences, action_mask, attention_mask)
r = self.reward_model(sequences, attention_mask)
reward = compute_reward(r, self.kl_coef, action_log_probs, base_action_log_probs, action_mask=action_mask)
advantage = reward - value
# TODO(ver217): maybe normalize adv
if advantage.ndim == 1:
advantage = advantage.unsqueeze(-1)
return Experience(sequences, action_log_probs, value, reward, advantage, attention_mask, action_mask)

View File

@ -0,0 +1,4 @@
from .base import Actor, Critic, RewardModel
from .loss import LogExpLoss, LogSigLoss, PolicyLoss, PPOPtxActorLoss, ValueLoss
__all__ = ['Actor', 'Critic', 'RewardModel', 'PolicyLoss', 'ValueLoss', 'PPOPtxActorLoss', 'LogSigLoss', 'LogExpLoss']

View File

@ -0,0 +1,6 @@
from .actor import Actor
from .critic import Critic
from .lm import LM
from .reward_model import RewardModel
__all__ = ['Actor', 'Critic', 'RewardModel', 'LM']

View File

@ -0,0 +1,65 @@
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..generation import generate
from ..lora import LoRAModule
from ..utils import log_probs_from_logits
class Actor(LoRAModule):
"""
Actor model base class.
Args:
model (nn.Module): Actor Model.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self, model: nn.Module, lora_rank: int = 0, lora_train_bias: str = 'none') -> None:
super().__init__(lora_rank=lora_rank, lora_train_bias=lora_train_bias)
self.model = model
self.convert_to_lora()
@torch.no_grad()
def generate(
self,
input_ids: torch.Tensor,
return_action_mask: bool = True,
**kwargs
) -> Union[Tuple[torch.LongTensor, torch.LongTensor], Tuple[torch.LongTensor, torch.LongTensor, torch.BoolTensor]]:
sequences = generate(self.model, input_ids, **kwargs)
attention_mask = None
pad_token_id = kwargs.get('pad_token_id', None)
if pad_token_id is not None:
attention_mask = sequences.not_equal(pad_token_id).to(dtype=torch.long, device=sequences.device)
if not return_action_mask:
return sequences, attention_mask, None
input_len = input_ids.size(1)
eos_token_id = kwargs.get('eos_token_id', None)
if eos_token_id is None:
action_mask = torch.ones_like(sequences, dtype=torch.bool)
else:
# left padding may be applied, only mask action
action_mask = (sequences[:, input_len:] == eos_token_id).cumsum(dim=-1) == 0
action_mask = F.pad(action_mask, (1 + input_len, -1), value=True) # include eos token and input
action_mask[:, :input_len] = False
action_mask = action_mask[:, 1:]
return sequences, attention_mask, action_mask[:, -(sequences.size(1) - input_len):]
def forward(self,
sequences: torch.LongTensor,
num_actions: int,
attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Returns action log probs
"""
output = self.model(sequences, attention_mask=attention_mask)
logits = output['logits']
log_probs = log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:])
return log_probs[:, -num_actions:]
def get_base_model(self):
return self.model

View File

@ -0,0 +1,54 @@
from typing import Optional
import torch
import torch.nn as nn
from ..lora import LoRAModule
from ..utils import masked_mean
class Critic(LoRAModule):
"""
Critic model base class.
Args:
model (nn.Module): Critic model.
value_head (nn.Module): Value head to get value.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(
self,
model: nn.Module,
value_head: nn.Module,
lora_rank: int = 0,
lora_train_bias: str = 'none',
use_action_mask: bool = False,
) -> None:
super().__init__(lora_rank=lora_rank, lora_train_bias=lora_train_bias)
self.model = model
self.value_head = value_head
self.use_action_mask = use_action_mask
self.convert_to_lora()
def forward(self,
sequences: torch.LongTensor,
action_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
outputs = self.model(sequences, attention_mask=attention_mask)
last_hidden_states = outputs['last_hidden_state']
values = self.value_head(last_hidden_states).squeeze(-1)
if action_mask is not None and self.use_action_mask:
num_actions = action_mask.size(1)
prompt_mask = attention_mask[:, :-num_actions]
values = values[:, :-num_actions]
value = masked_mean(values, prompt_mask, dim=1)
return value
values = values[:, :-1]
value = values.mean(dim=1)
return value

View File

@ -0,0 +1,30 @@
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..generation import generate
from .actor import Actor
class LM(Actor):
"""
Language model base class.
Args:
model (nn.Module): Language Model.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self, model: nn.Module, lora_rank: int = 0, lora_train_bias: str = 'none') -> None:
super().__init__(model=model, lora_rank=lora_rank, lora_train_bias=lora_train_bias)
def forward(self, sequences: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Returns output log probs
"""
output = self.model(sequences, attention_mask=attention_mask)
logits = output['logits']
log_probs = F.log_softmax(logits, dim=-1)
return log_probs

View File

@ -0,0 +1,41 @@
from typing import Optional
import torch
import torch.nn as nn
from ..lora import LoRAModule
class RewardModel(LoRAModule):
"""
Reward model base class.
Args:
model (nn.Module): Reward model.
value_head (nn.Module): Value head to get reward score.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
model: nn.Module,
value_head: Optional[nn.Module] = None,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
super().__init__(lora_rank=lora_rank, lora_train_bias=lora_train_bias)
self.model = model
self.convert_to_lora()
if value_head is not None:
if value_head.out_features != 1:
raise ValueError("The value head of reward model's output dim should be 1!")
self.value_head = value_head
else:
self.value_head = nn.Linear(model.config.n_embd, 1)
def forward(self, sequences: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
outputs = self.model(sequences, attention_mask=attention_mask)
last_hidden_states = outputs['last_hidden_state']
values = self.value_head(last_hidden_states)[:, :-1]
value = values.mean(dim=1).squeeze(1) # ensure shape is (B)
return value

View File

@ -0,0 +1,6 @@
from .bloom_actor import BLOOMActor
from .bloom_critic import BLOOMCritic
from .bloom_lm import BLOOMLM
from .bloom_rm import BLOOMRM
__all__ = ['BLOOMActor', 'BLOOMCritic', 'BLOOMRM', 'BLOOMLM']

View File

@ -0,0 +1,35 @@
from typing import Optional
import torch
from transformers import BloomConfig, BloomForCausalLM, BloomModel
from ..base import Actor
class BLOOMActor(Actor):
"""
BLOOM Actor model.
Args:
pretrained (str): Pretrained model name or path.
config (BloomConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: str = None,
config: Optional[BloomConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = BloomForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = BloomForCausalLM(config)
else:
model = BloomForCausalLM(BloomConfig())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank, lora_train_bias)

View File

@ -0,0 +1,38 @@
from typing import Optional
import torch
import torch.nn as nn
from transformers import BloomConfig, BloomForCausalLM, BloomModel
from ..base import Critic
class BLOOMCritic(Critic):
"""
BLOOM Critic model.
Args:
pretrained (str): Pretrained model name or path.
config (BloomConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: str = None,
config: Optional[BloomConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none',
**kwargs) -> None:
if pretrained is not None:
model = BloomModel.from_pretrained(pretrained)
elif config is not None:
model = BloomModel(config)
else:
model = BloomModel(BloomConfig())
if checkpoint:
model.gradient_checkpointing_enable()
value_head = nn.Linear(model.config.hidden_size, 1)
super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)

View File

@ -0,0 +1,35 @@
from typing import Optional
import torch
from transformers import BloomConfig, BloomForCausalLM, BloomModel
from ..base import LM
class BLOOMLM(LM):
"""
BLOOM language model.
Args:
pretrained (str): Pretrained model name or path.
config (BloomConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: str = None,
config: Optional[BloomConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = BloomForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = BloomForCausalLM(config)
else:
model = BloomForCausalLM(BloomConfig())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank, lora_train_bias)

View File

@ -0,0 +1,37 @@
from typing import Optional
import torch.nn as nn
from transformers import BloomConfig, BloomForCausalLM, BloomModel
from ..base import RewardModel
class BLOOMRM(RewardModel):
"""
BLOOM Reward model.
Args:
pretrained (str): Pretrained model name or path.
config (BloomConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: str = None,
config: Optional[BloomConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = BloomModel.from_pretrained(pretrained)
elif config is not None:
model = BloomModel(config)
else:
model = BloomModel(BloomConfig())
if checkpoint:
model.gradient_checkpointing_enable()
value_head = nn.Linear(model.config.hidden_size, 1)
value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.hidden_size + 1))
super().__init__(model, value_head, lora_rank, lora_train_bias)

View File

@ -0,0 +1,4 @@
from .deberta_critic import DebertaCritic
from .deberta_rm import DebertaRM
__all__ = ['DebertaCritic', 'DebertaRM']

View File

@ -0,0 +1,36 @@
from typing import Optional
import torch.nn as nn
from transformers import DebertaV2Config, DebertaV2Model
from ..base import Critic
class DebertaCritic(Critic):
"""
Deberta Critic model.
Args:
pretrained (str): Pretrained model name or path.
config (DebertaV2Config): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the LO-RA decomposition.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[DebertaV2Config] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = DebertaV2Model.from_pretrained(pretrained)
elif config is not None:
model = DebertaV2Model(config)
else:
model = DebertaV2Model(DebertaV2Config())
if checkpoint:
model.gradient_checkpointing_enable()
value_head = nn.Linear(model.config.hidden_size, 1)
super().__init__(model, value_head, lora_rank, lora_train_bias)

View File

@ -0,0 +1,37 @@
from typing import Optional
import torch.nn as nn
from transformers import DebertaV2Config, DebertaV2Model
from ..base import RewardModel
class DebertaRM(RewardModel):
"""
Deberta Reward model.
Args:
pretrained (str): Pretrained model name or path.
config (DebertaV2Config): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the LO-RA decomposition.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: str = None,
config: Optional[DebertaV2Config] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = DebertaV2Model.from_pretrained(pretrained)
elif config is not None:
model = DebertaV2Model(config)
else:
model = DebertaV2Model(DebertaV2Config())
if checkpoint:
model.gradient_checkpointing_enable()
value_head = nn.Linear(model.config.hidden_size, 1)
value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.hidden_size + 1))
super().__init__(model, value_head, lora_rank, lora_train_bias)

View File

@ -0,0 +1,146 @@
from typing import Any, Callable, Optional
import torch
import torch.distributed as dist
import torch.nn as nn
try:
from transformers.generation_logits_process import (
LogitsProcessorList,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
)
except ImportError:
from transformers.generation import LogitsProcessorList, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper
def prepare_logits_processor(top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None) -> LogitsProcessorList:
processor_list = LogitsProcessorList()
if temperature is not None and temperature != 1.0:
processor_list.append(TemperatureLogitsWarper(temperature))
if top_k is not None and top_k != 0:
processor_list.append(TopKLogitsWarper(top_k))
if top_p is not None and top_p < 1.0:
processor_list.append(TopPLogitsWarper(top_p))
return processor_list
def _is_sequence_finished(unfinished_sequences: torch.Tensor) -> bool:
if dist.is_initialized() and dist.get_world_size() > 1:
# consider DP
unfinished_sequences = unfinished_sequences.clone()
dist.all_reduce(unfinished_sequences)
return unfinished_sequences.max() == 0
def sample(model: nn.Module,
input_ids: torch.Tensor,
max_length: int,
early_stopping: bool = False,
eos_token_id: Optional[int] = None,
pad_token_id: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None,
update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None,
**model_kwargs) -> torch.Tensor:
if input_ids.size(1) >= max_length:
return input_ids
logits_processor = prepare_logits_processor(top_k, top_p, temperature)
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
for _ in range(input_ids.size(1), max_length):
model_inputs = prepare_inputs_fn(input_ids, **model_kwargs) if prepare_inputs_fn is not None else {
'input_ids': input_ids
}
outputs = model(**model_inputs)
next_token_logits = outputs['logits'][:, -1, :]
# pre-process distribution
next_token_logits = logits_processor(input_ids, next_token_logits)
# sample
probs = torch.softmax(next_token_logits, dim=-1, dtype=torch.float)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# update generated ids, model inputs for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
if update_model_kwargs_fn is not None:
model_kwargs = update_model_kwargs_fn(outputs, **model_kwargs)
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id is not None:
unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long())
# stop when each sentence is finished if early_stopping=True
if early_stopping and _is_sequence_finished(unfinished_sequences):
break
return input_ids
def generate(model: nn.Module,
input_ids: torch.Tensor,
max_length: int,
num_beams: int = 1,
do_sample: bool = True,
early_stopping: bool = False,
eos_token_id: Optional[int] = None,
pad_token_id: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None,
update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None,
**model_kwargs) -> torch.Tensor:
"""Generate token sequence. The returned sequence is input_ids + generated_tokens.
Args:
model (nn.Module): model
input_ids (torch.Tensor): input sequence
max_length (int): max length of the returned sequence
num_beams (int, optional): number of beams. Defaults to 1.
do_sample (bool, optional): whether to do sample. Defaults to True.
early_stopping (bool, optional): if True, the sequence length may be smaller than max_length due to finding eos. Defaults to False.
eos_token_id (Optional[int], optional): end of sequence token id. Defaults to None.
pad_token_id (Optional[int], optional): pad token id. Defaults to None.
top_k (Optional[int], optional): the number of highest probability vocabulary tokens to keep for top-k-filtering. Defaults to None.
top_p (Optional[float], optional): If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation. Defaults to None.
temperature (Optional[float], optional): The value used to module the next token probabilities. Defaults to None.
prepare_inputs_fn (Optional[Callable[[torch.Tensor, Any], dict]], optional): Function to preprocess model inputs. Arguments of this function should be input_ids and model_kwargs. Defaults to None.
update_model_kwargs_fn (Optional[Callable[[dict, Any], dict]], optional): Function to update model_kwargs based on outputs. Arguments of this function should be outputs and model_kwargs. Defaults to None.
"""
is_greedy_gen_mode = ((num_beams == 1) and do_sample is False)
is_sample_gen_mode = ((num_beams == 1) and do_sample is True)
is_beam_gen_mode = ((num_beams > 1) and do_sample is False)
if is_greedy_gen_mode:
# run greedy search
raise NotImplementedError
elif is_sample_gen_mode:
# run sample
return sample(model,
input_ids,
max_length,
early_stopping=early_stopping,
eos_token_id=eos_token_id,
pad_token_id=pad_token_id,
top_k=top_k,
top_p=top_p,
temperature=temperature,
prepare_inputs_fn=prepare_inputs_fn,
update_model_kwargs_fn=update_model_kwargs_fn,
**model_kwargs)
elif is_beam_gen_mode:
raise NotImplementedError
else:
raise ValueError("Unsupported generation mode")

View File

@ -0,0 +1,92 @@
from typing import Optional
import torch
def gpt_prepare_inputs_fn(input_ids: torch.Tensor, past: Optional[torch.Tensor] = None, **kwargs) -> dict:
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
return {
"input_ids": input_ids,
"past_key_values": past,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
def update_model_kwargs_fn(outputs: dict, **model_kwargs) -> dict:
if "past_key_values" in outputs:
model_kwargs["past"] = outputs["past_key_values"]
else:
model_kwargs["past"] = None
# update token_type_ids with last value
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
# update attention mask
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
return model_kwargs
def opt_prepare_inputs_fn(input_ids: torch.Tensor,
past: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
**kwargs) -> dict:
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
if past:
input_ids = input_ids[:, -1:]
# first step, decoder_cached_states are empty
return {
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
"attention_mask": attention_mask,
"past_key_values": past,
"use_cache": use_cache,
}
def bloom_prepare_inputs_fn(input_ids: torch.Tensor,
past: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
**kwargs) -> dict:
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
if past:
input_ids = input_ids[:, -1:]
# first step, decoder_cached_states are empty
return {
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
"attention_mask": attention_mask,
"past_key_values": past,
"use_cache": use_cache,
}

View File

@ -0,0 +1,6 @@
from .gpt_actor import GPTActor
from .gpt_critic import GPTCritic
from .gpt_lm import GPTLM
from .gpt_rm import GPTRM
__all__ = ['GPTActor', 'GPTCritic', 'GPTRM', 'GPTLM']

View File

@ -0,0 +1,35 @@
from typing import Optional
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
from ..base import Actor
class GPTActor(Actor):
"""
GPT Actor model.
Args:
pretrained (str): Pretrained model name or path.
config (GPT2Config): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the LoRa layer.
lora_train_bias (str): Bias training strategy for the LoRa layer.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[GPT2Config] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = GPT2LMHeadModel.from_pretrained(pretrained)
elif config is not None:
model = GPT2LMHeadModel(config)
else:
model = GPT2LMHeadModel(GPT2Config())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank, lora_train_bias)

View File

@ -0,0 +1,37 @@
from typing import Optional
import torch.nn as nn
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
from ..base import Critic
class GPTCritic(Critic):
"""
GPT Critic model.
Args:
pretrained (str): Pretrained model name or path.
config (GPT2Config): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the LO-RA decomposition.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[GPT2Config] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = GPT2Model.from_pretrained(pretrained)
elif config is not None:
model = GPT2Model(config)
else:
model = GPT2Model(GPT2Config())
if checkpoint:
model.gradient_checkpointing_enable()
value_head = nn.Linear(model.config.n_embd, 1)
super().__init__(model, value_head, lora_rank, lora_train_bias)

View File

@ -0,0 +1,35 @@
from typing import Optional
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
from ..base import LM
class GPTLM(LM):
"""
GPT language model.
Args:
pretrained (str): Pretrained model name or path.
config (GPT2Config): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the LoRa layer.
lora_train_bias (str): Bias training strategy for the LoRa layer.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[GPT2Config] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = GPT2LMHeadModel.from_pretrained(pretrained)
elif config is not None:
model = GPT2LMHeadModel(config)
else:
model = GPT2LMHeadModel(GPT2Config())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank, lora_train_bias)

View File

@ -0,0 +1,39 @@
from typing import Optional
import torch.nn as nn
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
from ..base import RewardModel
class GPTRM(RewardModel):
"""
GPT Reward model.
Args:
pretrained (str): Pretrained model name or path.
config (GPT2Config): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the low-rank approximation.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[GPT2Config] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = GPT2Model.from_pretrained(pretrained)
elif config is not None:
model = GPT2Model(config)
else:
model = GPT2Model(GPT2Config())
if checkpoint:
model.gradient_checkpointing_enable()
value_head = nn.Linear(model.config.n_embd, 1)
value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.n_embd + 1))
super().__init__(model, value_head, lora_rank, lora_train_bias)

View File

@ -0,0 +1,6 @@
from .llama_actor import LlamaActor
from .llama_critic import LlamaCritic
from .llama_lm import LlamaLM
from .llama_rm import LlamaRM
__all__ = ['LlamaActor', 'LlamaCritic', 'LlamaRM', 'LlamaLM']

View File

@ -0,0 +1,38 @@
from typing import Optional
import torch
from transformers import AutoModelForCausalLM, LlamaConfig, LlamaForCausalLM
from ..base import Actor
class LlamaActor(Actor):
"""
Llama Actor model.
Args:
pretrained (str): Pretrained model name or path.
config (LlamaConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[LlamaConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = LlamaForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = LlamaForCausalLM(config)
else:
model = LlamaForCausalLM(LlamaConfig())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank, lora_train_bias)

View File

@ -0,0 +1,42 @@
from typing import Optional
import torch
import torch.nn as nn
from transformers import AutoModelForCausalLM, LlamaConfig, LlamaForCausalLM
from ..base import Critic
class LlamaCritic(Critic):
"""
Llama Critic model.
Args:
pretrained (str): Pretrained model name or path.
config (LlamaConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[LlamaConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none',
**kwargs) -> None:
if pretrained is not None:
model = LlamaForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = LlamaForCausalLM(config)
else:
model = LlamaForCausalLM(LlamaConfig())
if checkpoint:
model.gradient_checkpointing_enable()
value_head = nn.Linear(model.config.hidden_size, 1)
super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)

View File

@ -0,0 +1,40 @@
from typing import Optional
from transformers import LlamaConfig, LlamaForCausalLM
from ..base import LM
class LlamaLM(LM):
"""
Llama language model.
Args:
pretrained (str): Pretrained model name or path.
config (LlamaConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[LlamaConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = LlamaForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = LlamaForCausalLM(config)
else:
model = LlamaForCausalLM(LlamaConfig())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank, lora_train_bias)
def forward(self, input_ids, attention_mask=None, labels=None, **kwargs):
return self.model(input_ids, attention_mask=attention_mask, labels=labels, **kwargs)

View File

@ -0,0 +1,40 @@
from typing import Optional
import torch.nn as nn
from transformers import LlamaConfig, LlamaForCausalLM, LlamaModel
from ..base import RewardModel
class LlamaRM(RewardModel):
"""
Llama Reward model.
Args:
pretrained (str): Pretrained model name or path.
config (LlamaConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[LlamaConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = LlamaModel.from_pretrained(pretrained)
elif config is not None:
model = LlamaModel(config)
else:
model = LlamaModel(LlamaConfig())
if checkpoint:
model.gradient_checkpointing_enable()
value_head = nn.Linear(model.config.hidden_size, 1)
value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.hidden_size + 1))
super().__init__(model, value_head, lora_rank, lora_train_bias)

View File

@ -0,0 +1,129 @@
import math
from typing import Optional
import loralib as lora
import torch
import torch.nn as nn
import torch.nn.functional as F
class LoraLinear(lora.LoRALayer, nn.Module):
"""Replace in-place ops to out-of-place ops to fit gemini. Convert a torch.nn.Linear to LoraLinear.
"""
def __init__(
self,
weight: nn.Parameter,
bias: Optional[nn.Parameter],
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.,
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
merge_weights: bool = True,
):
nn.Module.__init__(self)
lora.LoRALayer.__init__(self,
r=r,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
merge_weights=merge_weights)
self.weight = weight
self.bias = bias
out_features, in_features = weight.shape
self.in_features = in_features
self.out_features = out_features
self.fan_in_fan_out = fan_in_fan_out
# Actual trainable parameters
if r > 0:
self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features)))
self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)))
self.scaling = self.lora_alpha / self.r
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False
self.reset_parameters()
if fan_in_fan_out:
self.weight.data = self.weight.data.T
def reset_parameters(self):
if hasattr(self, 'lora_A'):
# initialize A the same way as the default for nn.Linear and B to zero
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
def train(self, mode: bool = True):
def T(w):
return w.T if self.fan_in_fan_out else w
nn.Module.train(self, mode)
if self.merge_weights and self.merged:
# Make sure that the weights are not merged
if self.r > 0:
self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling
self.merged = False
def eval(self):
def T(w):
return w.T if self.fan_in_fan_out else w
nn.Module.eval(self)
if self.merge_weights and not self.merged:
# Merge the weights and mark it
if self.r > 0:
self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
delattr(self, 'lora_A')
delattr(self, 'lora_B')
self.merged = True
def forward(self, x: torch.Tensor):
def T(w):
return w.T if self.fan_in_fan_out else w
if self.r > 0 and not self.merged:
result = F.linear(x, T(self.weight), bias=self.bias)
if self.r > 0:
result = result + (self.lora_dropout(x) @ self.lora_A.t() @ self.lora_B.t()) * self.scaling
return result
else:
return F.linear(x, T(self.weight), bias=self.bias)
def lora_linear_wrapper(linear: nn.Linear, lora_rank: int) -> LoraLinear:
assert lora_rank <= linear.in_features, f'LoRA rank ({lora_rank}) must be less than or equal to in features ({linear.in_features})'
lora_linear = LoraLinear(linear.weight, linear.bias, r=lora_rank, merge_weights=False)
return lora_linear
def convert_to_lora_recursively(module: nn.Module, lora_rank: int) -> None:
for name, child in module.named_children():
if isinstance(child, nn.Linear):
setattr(module, name, lora_linear_wrapper(child, lora_rank))
else:
convert_to_lora_recursively(child, lora_rank)
class LoRAModule(nn.Module):
"""A LoRA module base class. All derived classes should call `convert_to_lora()` at the bottom of `__init__()`.
This calss will convert all torch.nn.Linear layer to LoraLinear layer.
Args:
lora_rank (int, optional): LoRA rank. 0 means LoRA is not applied. Defaults to 0.
lora_train_bias (str, optional): Whether LoRA train biases.
'none' means it doesn't train biases. 'all' means it trains all biases. 'lora_only' means it only trains biases of LoRA layers.
Defaults to 'none'.
"""
def __init__(self, lora_rank: int = 0, lora_train_bias: str = 'none') -> None:
super().__init__()
self.lora_rank = lora_rank
self.lora_train_bias = lora_train_bias
def convert_to_lora(self) -> None:
if self.lora_rank <= 0:
return
convert_to_lora_recursively(self, self.lora_rank)
lora.mark_only_lora_as_trainable(self, self.lora_train_bias)

View File

@ -0,0 +1,117 @@
from typing import Optional
import torch
import torch.nn as nn
from .utils import masked_mean
class GPTLMLoss(nn.Module):
"""
GPT Language Model Loss
"""
def __init__(self):
super().__init__()
self.loss = nn.CrossEntropyLoss()
def forward(self, logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
class PolicyLoss(nn.Module):
"""
Policy Loss for PPO
"""
def __init__(self, clip_eps: float = 0.2) -> None:
super().__init__()
self.clip_eps = clip_eps
def forward(self,
log_probs: torch.Tensor,
old_log_probs: torch.Tensor,
advantages: torch.Tensor,
action_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
ratio = (log_probs - old_log_probs).exp()
surr1 = ratio * advantages
surr2 = ratio.clamp(1 - self.clip_eps, 1 + self.clip_eps) * advantages
loss = -torch.min(surr1, surr2)
if action_mask is not None:
loss = masked_mean(loss, action_mask)
loss = loss.mean()
return loss
class ValueLoss(nn.Module):
"""
Value Loss for PPO
"""
def __init__(self, clip_eps: float = 0.4) -> None:
super().__init__()
self.clip_eps = clip_eps
def forward(self,
values: torch.Tensor,
old_values: torch.Tensor,
reward: torch.Tensor,
action_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
values_clipped = old_values + (values - old_values).clamp(-self.clip_eps, self.clip_eps)
surr1 = (values_clipped - reward)**2
surr2 = (values - reward)**2
loss = torch.max(surr1, surr2)
loss = loss.mean()
return loss
class PPOPtxActorLoss(nn.Module):
"""
To Do:
PPO-ptx Actor Loss
"""
def __init__(self, policy_clip_eps: float = 0.2, pretrain_coef: float = 0.0, pretrain_loss_fn=GPTLMLoss()) -> None:
super().__init__()
self.pretrain_coef = pretrain_coef
self.policy_loss_fn = PolicyLoss(clip_eps=policy_clip_eps)
self.pretrain_loss_fn = pretrain_loss_fn
def forward(self,
log_probs: torch.Tensor,
old_log_probs: torch.Tensor,
advantages: torch.Tensor,
lm_logits: torch.Tensor,
lm_input_ids: torch.Tensor,
action_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
policy_loss = self.policy_loss_fn(log_probs, old_log_probs, advantages, action_mask=action_mask)
lm_loss = self.pretrain_loss_fn(lm_logits, lm_input_ids)
return policy_loss + self.pretrain_coef * lm_loss
class LogSigLoss(nn.Module):
"""
Pairwise Loss for Reward Model
Details: https://arxiv.org/abs/2203.02155
"""
def forward(self, chosen_reward: torch.Tensor, reject_reward: torch.Tensor) -> torch.Tensor:
probs = torch.sigmoid(chosen_reward - reject_reward)
log_probs = torch.log(probs)
loss = -log_probs.mean()
return loss
class LogExpLoss(nn.Module):
"""
Pairwise Loss for Reward Model
Details: https://arxiv.org/abs/2204.05862
"""
def forward(self, chosen_reward: torch.Tensor, reject_reward: torch.Tensor) -> torch.Tensor:
loss = torch.log(1 + torch.exp(reject_reward - chosen_reward)).mean()
return loss

View File

@ -0,0 +1,6 @@
from .opt_actor import OPTActor
from .opt_critic import OPTCritic
from .opt_lm import OPTLM
from .opt_rm import OPTRM
__all__ = ['OPTActor', 'OPTCritic', 'OPTRM', 'OPTLM']

View File

@ -0,0 +1,35 @@
from typing import Optional
from transformers.models.opt.configuration_opt import OPTConfig
from transformers.models.opt.modeling_opt import OPTForCausalLM
from ..base import Actor
class OPTActor(Actor):
"""
OPT Actor model.
Args:
pretrained (str): Pretrained model name or path.
config (OPTConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the low-rank approximation.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[OPTConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = OPTForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = OPTForCausalLM(config)
else:
model = OPTForCausalLM(OPTConfig())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank, lora_train_bias)

View File

@ -0,0 +1,38 @@
from typing import Optional
import torch.nn as nn
from transformers.models.opt.configuration_opt import OPTConfig
from transformers.models.opt.modeling_opt import OPTModel
from ..base import Critic
class OPTCritic(Critic):
"""
OPT Critic model.
Args:
pretrained (str): Pretrained model name or path.
config (OPTConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the low-rank approximation.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[OPTConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none',
**kwargs) -> None:
if pretrained is not None:
model = OPTModel.from_pretrained(pretrained)
elif config is not None:
model = OPTModel(config)
else:
model = OPTModel(OPTConfig())
if checkpoint:
model.gradient_checkpointing_enable()
value_head = nn.Linear(model.config.word_embed_proj_dim, 1)
super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)

View File

@ -0,0 +1,35 @@
from typing import Optional
from transformers.models.opt.configuration_opt import OPTConfig
from transformers.models.opt.modeling_opt import OPTForCausalLM
from ..base import LM
class OPTLM(LM):
"""
OPT language model.
Args:
pretrained (str): Pretrained model name or path.
config (OPTConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the low-rank approximation.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[OPTConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = OPTForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = OPTForCausalLM(config)
else:
model = OPTForCausalLM(OPTConfig())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank, lora_train_bias)

View File

@ -0,0 +1,38 @@
from typing import Optional
import torch.nn as nn
from transformers import OPTConfig, OPTModel
from ..base import RewardModel
class OPTRM(RewardModel):
"""
OPT Reward model.
Args:
pretrained (str): Pretrained model name or path.
config (OPTConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the low-rank approximation.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[OPTConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = OPTModel.from_pretrained(pretrained)
elif config is not None:
model = OPTModel(config)
else:
model = OPTModel(OPTConfig())
if checkpoint:
model.gradient_checkpointing_enable()
value_head = nn.Linear(model.config.word_embed_proj_dim, 1)
value_head.weight.data.normal_(mean=0.0, std=1 / (model.config.word_embed_proj_dim + 1))
super().__init__(model, value_head, lora_rank, lora_train_bias)

View File

@ -0,0 +1,92 @@
from typing import Optional, Union
import loralib as lora
import torch
import torch.nn as nn
import torch.nn.functional as F
def compute_approx_kl(log_probs: torch.Tensor,
log_probs_base: torch.Tensor,
action_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Compute the approximate KL divergence between two distributions.
Schulman blog: http://joschu.net/blog/kl-approx.html
Args:
log_probs: Log probabilities of the new distribution.
log_probs_base: Log probabilities of the base distribution.
action_mask: Mask for actions.
"""
log_ratio = log_probs - log_probs_base
approx_kl = (log_ratio.exp() - 1) - log_ratio
if action_mask is not None:
approx_kl = masked_mean(approx_kl, action_mask, dim=1)
return approx_kl
approx_kl = approx_kl.mean(dim=1)
return approx_kl
def compute_reward(r: Union[torch.Tensor, float],
kl_coef: float,
log_probs: torch.Tensor,
log_probs_base: torch.Tensor,
action_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
if kl_coef <= 0.0:
return r
kl = compute_approx_kl(log_probs, log_probs_base, action_mask=action_mask)
reward = r - kl_coef * kl
return reward
def log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
log_probs = F.log_softmax(logits, dim=-1)
log_probs_labels = log_probs.gather(dim=-1, index=labels.unsqueeze(-1))
return log_probs_labels.squeeze(-1)
def masked_mean(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.Tensor:
tensor = tensor * mask
tensor = tensor.sum(dim=dim)
mask_sum = mask.sum(dim=dim)
mean = tensor / (mask_sum + 1e-8)
return mean
def masked_normalize(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1, eps: float = 1e-8) -> torch.Tensor:
tensor = tensor * mask
mean = masked_mean(tensor, mask, dim=dim)
mean_centered = tensor - mean
var = masked_mean(mean_centered**2, mask, dim=dim)
return mean_centered * var.clamp(min=eps).rsqrt()
def normalize(tensor: torch.Tensor, dim: int = 0, eps: float = 1e-8) -> torch.Tensor:
mean = tensor.mean(dim)
mean_centered = tensor - mean
var = (mean_centered**2).mean(dim)
norm = mean_centered * var.clamp(min=eps).rsqrt()
return norm
def convert_to_lora(model: nn.Module,
input_size: int,
output_size: int,
lora_rank: int = 16,
lora_alpha: int = 1,
lora_dropout: float = 0.,
fan_in_fan_out: bool = False,
merge_weights: bool = True):
if lora_rank > min(input_size, output_size):
raise ValueError(f"LoRA rank {lora_rank} must be less or equal than {min(input_size, output_size)}")
for name, module in model.named_modules():
if isinstance(module, nn.Linear):
module._modules[name] = lora.Linear(input_size,
output_size,
r=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
fan_in_fan_out=fan_in_fan_out,
merge_weights=merge_weights)

View File

@ -0,0 +1,4 @@
from .base import ReplayBuffer
from .naive import NaiveReplayBuffer
__all__ = ['ReplayBuffer', 'NaiveReplayBuffer']

View File

@ -0,0 +1,43 @@
from abc import ABC, abstractmethod
from typing import Any
from coati.experience_maker.base import Experience
class ReplayBuffer(ABC):
"""Replay buffer base class. It stores experience.
Args:
sample_batch_size (int): Batch size when sampling.
limit (int, optional): Limit of number of experience samples. A number <= 0 means unlimited. Defaults to 0.
"""
def __init__(self, sample_batch_size: int, limit: int = 0) -> None:
super().__init__()
self.sample_batch_size = sample_batch_size
# limit <= 0 means unlimited
self.limit = limit
@abstractmethod
def append(self, experience: Experience) -> None:
pass
@abstractmethod
def clear(self) -> None:
pass
@abstractmethod
def sample(self) -> Experience:
pass
@abstractmethod
def __len__(self) -> int:
pass
@abstractmethod
def __getitem__(self, idx: int) -> Any:
pass
@abstractmethod
def collate_fn(self, batch: Any) -> Experience:
pass

View File

@ -0,0 +1,57 @@
import random
from typing import List
import torch
from coati.experience_maker.base import Experience
from .base import ReplayBuffer
from .utils import BufferItem, make_experience_batch, split_experience_batch
class NaiveReplayBuffer(ReplayBuffer):
"""Naive replay buffer class. It stores experience.
Args:
sample_batch_size (int): Batch size when sampling.
limit (int, optional): Limit of number of experience samples. A number <= 0 means unlimited. Defaults to 0.
cpu_offload (bool, optional): Whether to offload experience to cpu when sampling. Defaults to True.
"""
def __init__(self, sample_batch_size: int, limit: int = 0, cpu_offload: bool = True) -> None:
super().__init__(sample_batch_size, limit)
self.cpu_offload = cpu_offload
self.target_device = torch.device(f'cuda:{torch.cuda.current_device()}')
# TODO(ver217): add prefetch
self.items: List[BufferItem] = []
@torch.no_grad()
def append(self, experience: Experience) -> None:
if self.cpu_offload:
experience.to_device(torch.device('cpu'))
items = split_experience_batch(experience)
self.items.extend(items)
if self.limit > 0:
samples_to_remove = len(self.items) - self.limit
if samples_to_remove > 0:
self.items = self.items[samples_to_remove:]
def clear(self) -> None:
self.items.clear()
@torch.no_grad()
def sample(self) -> Experience:
items = random.sample(self.items, self.sample_batch_size)
experience = make_experience_batch(items)
if self.cpu_offload:
experience.to_device(self.target_device)
return experience
def __len__(self) -> int:
return len(self.items)
def __getitem__(self, idx: int) -> BufferItem:
return self.items[idx]
def collate_fn(self, batch) -> Experience:
experience = make_experience_batch(batch)
return experience

View File

@ -0,0 +1,73 @@
from dataclasses import dataclass
from typing import List, Optional
import torch
import torch.nn.functional as F
from coati.experience_maker.base import Experience
@dataclass
class BufferItem:
"""BufferItem is an item of experience data.
Shapes of each tensor:
sequences: (S)
action_log_probs: (A)
values: (1)
reward: (1)
advatanges: (1)
attention_mask: (S)
action_mask: (A)
"A" is the number of actions.
"""
sequences: torch.Tensor
action_log_probs: torch.Tensor
values: torch.Tensor
reward: torch.Tensor
advantages: torch.Tensor
attention_mask: Optional[torch.LongTensor]
action_mask: Optional[torch.BoolTensor]
def split_experience_batch(experience: Experience) -> List[BufferItem]:
batch_size = experience.sequences.size(0)
batch_kwargs = [{} for _ in range(batch_size)]
keys = ('sequences', 'action_log_probs', 'values', 'reward', 'advantages', 'attention_mask', 'action_mask')
for key in keys:
value = getattr(experience, key)
if isinstance(value, torch.Tensor):
vals = torch.unbind(value)
else:
# None
vals = [value for _ in range(batch_size)]
assert batch_size == len(vals)
for i, v in enumerate(vals):
batch_kwargs[i][key] = v
items = [BufferItem(**kwargs) for kwargs in batch_kwargs]
return items
def zero_pad_sequences(sequences: List[torch.Tensor], side: str = 'left') -> torch.Tensor:
assert side in ('left', 'right')
max_len = max(seq.size(0) for seq in sequences)
padded_sequences = []
for seq in sequences:
pad_len = max_len - seq.size(0)
padding = (pad_len, 0) if side == 'left' else (0, pad_len)
padded_sequences.append(F.pad(seq, padding))
return torch.stack(padded_sequences, dim=0)
def make_experience_batch(items: List[BufferItem]) -> Experience:
kwargs = {}
to_pad_keys = set(('action_log_probs', 'action_mask'))
keys = ('sequences', 'action_log_probs', 'values', 'reward', 'advantages', 'attention_mask', 'action_mask')
for key in keys:
vals = [getattr(item, key) for item in items]
if key in to_pad_keys:
batch_data = zero_pad_sequences(vals)
else:
batch_data = torch.stack(vals, dim=0)
kwargs[key] = batch_data
return Experience(**kwargs)

View File

@ -0,0 +1,6 @@
from .base import Trainer
from .ppo import PPOTrainer
from .rm import RewardModelTrainer
from .sft import SFTTrainer
__all__ = ['Trainer', 'PPOTrainer', 'RewardModelTrainer', 'SFTTrainer']

View File

@ -0,0 +1,168 @@
from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from coati.experience_maker import Experience, ExperienceMaker
from coati.replay_buffer import ReplayBuffer
from torch import Tensor
from torch.utils.data import DistributedSampler
from tqdm import tqdm
from .callbacks import Callback
from .strategies import Strategy
from .utils import is_rank_0
class Trainer(ABC):
"""
Base class for rlhf trainers.
Args:
strategy (Strategy):the strategy to use for training
experience_maker (ExperienceMaker): the experience maker to use for produce experience to fullfill replay buffer
replay_buffer (ReplayBuffer): the replay buffer to use for training
experience_batch_size (int, defaults to 8): the batch size to use for experience generation
max_epochs (int, defaults to 1): the number of epochs of training process
tokenizer (Callable, optional): the tokenizer to use for tokenizing the input
sample_replay_buffer (bool, defaults to False): whether to sample from replay buffer
data_loader_pin_memory (bool, defaults to True): whether to pin memory for data loader
callbacks (List[Callback], defaults to []): the callbacks to call during training process
generate_kwargs (dict, optional): the kwargs to use while model generating
"""
def __init__(self,
strategy: Strategy,
experience_maker: ExperienceMaker,
replay_buffer: ReplayBuffer,
experience_batch_size: int = 8,
max_epochs: int = 1,
tokenizer: Optional[Callable[[Any], dict]] = None,
sample_replay_buffer: bool = False,
dataloader_pin_memory: bool = True,
callbacks: List[Callback] = [],
**generate_kwargs) -> None:
super().__init__()
self.strategy = strategy
self.experience_maker = experience_maker
self.replay_buffer = replay_buffer
self.experience_batch_size = experience_batch_size
self.max_epochs = max_epochs
self.tokenizer = tokenizer
self.generate_kwargs = generate_kwargs
self.sample_replay_buffer = sample_replay_buffer
self.dataloader_pin_memory = dataloader_pin_memory
self.callbacks = callbacks
@abstractmethod
def training_step(self, experience: Experience) -> Dict[str, Any]:
pass
def _make_experience(self, inputs: Union[Tensor, Dict[str, Tensor]]) -> Experience:
if isinstance(inputs, Tensor):
return self.experience_maker.make_experience(inputs, **self.generate_kwargs)
elif isinstance(inputs, dict):
return self.experience_maker.make_experience(**inputs, **self.generate_kwargs)
else:
raise ValueError(f'Unsupported input type "{type(inputs)}"')
def _sample_prompts(self, prompts) -> list:
indices = list(range(len(prompts)))
sampled_indices = self.strategy.experience_sampler.choice(indices, self.experience_batch_size, replace=False)
return [prompts[i] for i in sampled_indices]
def _learn(self):
# replay buffer may be empty at first, we should rebuild at each training
if not self.sample_replay_buffer:
dataloader = self.strategy.setup_dataloader(self.replay_buffer, self.dataloader_pin_memory)
device = torch.cuda.current_device()
if self.sample_replay_buffer:
pbar = tqdm(range(self.max_epochs), desc='Train epoch', disable=not is_rank_0())
for _ in pbar:
experience = self.replay_buffer.sample()
metrics = self.training_step(experience)
pbar.set_postfix(metrics)
else:
for epoch in range(self.max_epochs):
self._on_learn_epoch_start(epoch)
if isinstance(dataloader.sampler, DistributedSampler):
dataloader.sampler.set_epoch(epoch)
pbar = tqdm(dataloader, desc=f'Train epoch [{epoch+1}/{self.max_epochs}]', disable=not is_rank_0())
for experience in pbar:
self._on_learn_batch_start()
experience.to_device(device)
metrics = self.training_step(experience)
self._on_learn_batch_end(metrics, experience)
pbar.set_postfix(metrics)
self._on_learn_epoch_end(epoch)
def fit(self,
prompt_dataloader,
pretrain_dataloader,
num_episodes: int = 50000,
max_timesteps: int = 500,
update_timesteps: int = 5000) -> None:
time = 0
self.pretrain_dataloader = pretrain_dataloader
self.prompt_dataloader = prompt_dataloader
self._on_fit_start()
for episode in range(num_episodes):
self._on_episode_start(episode)
for timestep in tqdm(range(max_timesteps),
desc=f'Episode [{episode+1}/{num_episodes}]',
disable=not is_rank_0()):
time += 1
prompts = next(iter(self.prompt_dataloader))
self._on_make_experience_start()
self.experience_maker.initial_model.to(torch.cuda.current_device())
self.experience_maker.reward_model.to(torch.cuda.current_device())
experience = self._make_experience(prompts)
self._on_make_experience_end(experience)
self.replay_buffer.append(experience)
if time % update_timesteps == 0:
self.experience_maker.initial_model.to('cpu')
self.experience_maker.reward_model.to('cpu')
self._learn()
self.replay_buffer.clear()
self._on_episode_end(episode)
self._on_fit_end()
# TODO(ver217): maybe simplify these code using context
def _on_fit_start(self) -> None:
for callback in self.callbacks:
callback.on_fit_start()
def _on_fit_end(self) -> None:
for callback in self.callbacks:
callback.on_fit_end()
def _on_episode_start(self, episode: int) -> None:
for callback in self.callbacks:
callback.on_episode_start(episode)
def _on_episode_end(self, episode: int) -> None:
for callback in self.callbacks:
callback.on_episode_end(episode)
def _on_make_experience_start(self) -> None:
for callback in self.callbacks:
callback.on_make_experience_start()
def _on_make_experience_end(self, experience: Experience) -> None:
for callback in self.callbacks:
callback.on_make_experience_end(experience)
def _on_learn_epoch_start(self, epoch: int) -> None:
for callback in self.callbacks:
callback.on_learn_epoch_start(epoch)
def _on_learn_epoch_end(self, epoch: int) -> None:
for callback in self.callbacks:
callback.on_learn_epoch_end(epoch)
def _on_learn_batch_start(self) -> None:
for callback in self.callbacks:
callback.on_learn_batch_start()
def _on_learn_batch_end(self, metrics: dict, experience: Experience) -> None:
for callback in self.callbacks:
callback.on_learn_batch_end(metrics, experience)

View File

@ -0,0 +1,5 @@
from .base import Callback
from .performance_evaluator import PerformanceEvaluator
from .save_checkpoint import SaveCheckpoint
__all__ = ['Callback', 'PerformanceEvaluator', 'SaveCheckpoint']

View File

@ -0,0 +1,39 @@
from abc import ABC
from coati.experience_maker import Experience
class Callback(ABC):
"""
Base callback class. It defines the interface for callbacks.
"""
def on_fit_start(self) -> None:
pass
def on_fit_end(self) -> None:
pass
def on_episode_start(self, episode: int) -> None:
pass
def on_episode_end(self, episode: int) -> None:
pass
def on_make_experience_start(self) -> None:
pass
def on_make_experience_end(self, experience: Experience) -> None:
pass
def on_learn_epoch_start(self, epoch: int) -> None:
pass
def on_learn_epoch_end(self, epoch: int) -> None:
pass
def on_learn_batch_start(self) -> None:
pass
def on_learn_batch_end(self, metrics: dict, experience: Experience) -> None:
pass

View File

@ -0,0 +1,133 @@
from time import time
from typing import Optional
import torch
import torch.distributed as dist
from coati.experience_maker import Experience
from .base import Callback
def get_world_size() -> int:
if dist.is_initialized():
return dist.get_world_size()
return 1
def print_rank_0(*args, **kwargs) -> None:
if not dist.is_initialized() or dist.get_rank() == 0:
print(*args, **kwargs)
@torch.no_grad()
def all_reduce_mean(x: float, world_size: int) -> float:
if world_size == 1:
return x
tensor = torch.tensor([x], device=torch.cuda.current_device())
dist.all_reduce(tensor)
tensor = tensor / world_size
return tensor.item()
class PerformanceEvaluator(Callback):
"""
Callback for valuate the performance of the model.
Args:
actor_num_params: The number of parameters of the actor model.
critic_num_params: The number of parameters of the critic model.
initial_model_num_params: The number of parameters of the initial model.
reward_model_num_params: The number of parameters of the reward model.
enable_grad_checkpoint: Whether to enable gradient checkpointing.
ignore_episodes: The number of episodes to ignore when calculating the performance.
"""
def __init__(self,
actor_num_params: int,
critic_num_params: int,
initial_model_num_params: int,
reward_model_num_params: int,
enable_grad_checkpoint: bool = False,
ignore_episodes: int = 0) -> None:
super().__init__()
self.world_size = get_world_size()
self.actor_num_params = actor_num_params
self.critic_num_params = critic_num_params
self.initial_model_num_params = initial_model_num_params
self.reward_model_num_params = reward_model_num_params
self.enable_grad_checkpoint = enable_grad_checkpoint
self.ignore_episodes = ignore_episodes
self.disable: bool = False
self.make_experience_duration: float = 0.
self.make_experience_start_time: Optional[float] = None
self.make_experience_num_samples: int = 0
self.make_experience_flop: int = 0
self.learn_duration: float = 0.
self.learn_start_time: Optional[float] = None
self.learn_num_samples: int = 0
self.learn_flop: int = 0
def on_episode_start(self, episode: int) -> None:
self.disable = self.ignore_episodes > 0 and episode < self.ignore_episodes
def on_make_experience_start(self) -> None:
if self.disable:
return
self.make_experience_start_time = time()
def on_make_experience_end(self, experience: Experience) -> None:
if self.disable:
return
self.make_experience_duration += time() - self.make_experience_start_time
batch_size, seq_len = experience.sequences.shape
self.make_experience_num_samples += batch_size
# actor generate
num_actions = experience.action_mask.size(1)
input_len = seq_len - num_actions
total_seq_len = (input_len + seq_len - 1) * num_actions / 2
self.make_experience_flop += self.actor_num_params * batch_size * total_seq_len * 2
# actor forward
self.make_experience_flop += self.actor_num_params * batch_size * seq_len * 2
# critic forward
self.make_experience_flop += self.critic_num_params * batch_size * seq_len * 2
# initial model forward
self.make_experience_flop += self.initial_model_num_params * batch_size * seq_len * 2
# reward model forward
self.make_experience_flop += self.reward_model_num_params * batch_size * seq_len * 2
def on_learn_batch_start(self) -> None:
if self.disable:
return
self.learn_start_time = time()
def on_learn_batch_end(self, metrics: dict, experience: Experience) -> None:
if self.disable:
return
self.learn_duration += time() - self.learn_start_time
batch_size, seq_len = experience.sequences.shape
self.learn_num_samples += batch_size
# actor forward-backward, 3 means forward(1) + backward(2)
self.learn_flop += self.actor_num_params * batch_size * seq_len * 2 * (3 + int(self.enable_grad_checkpoint))
# critic foward-backward
self.learn_flop += self.critic_num_params * batch_size * seq_len * 2 * (3 + int(self.enable_grad_checkpoint))
def on_fit_end(self) -> None:
avg_make_experience_duration = all_reduce_mean(self.make_experience_duration, self.world_size)
avg_learn_duration = all_reduce_mean(self.learn_duration, self.world_size)
avg_make_experience_throughput = self.make_experience_num_samples / (avg_make_experience_duration + 1e-12)
avg_make_experience_tflops = self.make_experience_flop / 1e12 / (avg_make_experience_duration + 1e-12)
avg_learn_throughput = self.learn_num_samples / (avg_learn_duration + 1e-12)
avg_learn_tflops = self.learn_flop / 1e12 / (avg_learn_duration + 1e-12)
print_rank_0(
f'Making experience throughput: {avg_make_experience_throughput:.3f} samples/sec, TFLOPS: {avg_make_experience_tflops:.3f}'
)
print_rank_0(f'Learning throughput: {avg_learn_throughput:.3f} samples/sec, TFLOPS: {avg_learn_tflops:.3f}')

View File

@ -0,0 +1,75 @@
import os
import torch.distributed as dist
from coati.trainer.strategies import ColossalAIStrategy, Strategy
from coati.trainer.utils import is_rank_0
from torch import nn
from torch.optim import Optimizer
from .base import Callback
class SaveCheckpoint(Callback):
"""
The callback for saving checkpoint for coati.
Only support saving actor and critic model.
A typical architecture of the saved checkpoint would be:
- checkpoint
- episode_x
- actor.pt
- actor-optim-rank-0.pt
- actor-optim-rank-1.pt
- critic.pt
- critic-optim-rank-0.pt
- critic-optim-rank-1.pt
- ...
Args:
path(str): the base path you want to save checkpoint, the checkpoint would be saved at `path/checkpoint`
interval(int): the interval episode of saving checkpoint
strategy(Strategy): the strategy used to train
actor(nn.Module): the actor model
critic(nn.Module): the critic model
actor_optim(Optimizer): the optimizer of actor
critic_optim(Optimizer): the optimizer of critic
"""
def __init__(self,
path: str,
interval: int,
strategy: Strategy,
actor: nn.Module = None,
critic: nn.Module = None,
actor_optim: Optimizer = None,
critic_optim: Optimizer = None) -> None:
super().__init__()
self.path = os.path.join(path, 'checkpoint')
self.interval = interval
self.strategy = strategy
self.model_dict = {'actor': [actor, actor_optim], 'critic': [critic, critic_optim]}
def on_episode_end(self, episode: int) -> None:
if (episode + 1) % self.interval != 0:
return
base_path = os.path.join(self.path, f'episode_{episode}')
if not os.path.exists(base_path):
os.makedirs(base_path)
for model in self.model_dict.keys():
# save model
if self.model_dict[model][0] is None:
# saving only optimizer states is meaningless, so it would be skipped
continue
model_path = os.path.join(base_path, f'{model}.pt')
self.strategy.save_model(model=self.model_dict[model][0], path=model_path, only_rank0=True)
# save optimizer
if self.model_dict[model][1] is None:
continue
only_rank0 = not isinstance(self.strategy, ColossalAIStrategy)
rank = 0 if is_rank_0() else dist.get_rank()
optim_path = os.path.join(base_path, f'{model}-optim-rank-{rank}.pt')
self.strategy.save_optimizer(optimizer=self.model_dict[model][1], path=optim_path, only_rank0=only_rank0)

View File

@ -0,0 +1,135 @@
from typing import Any, Callable, Dict, List, Optional
import torch
import torch.nn as nn
from coati.experience_maker import Experience, NaiveExperienceMaker
from coati.models.base import Actor, Critic
from coati.models.generation_utils import update_model_kwargs_fn
from coati.models.loss import PolicyLoss, ValueLoss
from coati.replay_buffer import NaiveReplayBuffer
from torch.optim import Optimizer
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from .base import Trainer
from .callbacks import Callback
from .strategies import Strategy
class PPOTrainer(Trainer):
"""
Trainer for PPO algorithm.
Args:
strategy (Strategy): the strategy to use for training
actor (Actor): the actor model in ppo algorithm
critic (Critic): the critic model in ppo algorithm
reward_model (nn.Module): the reward model in rlhf algorithm to make reward of sentences
initial_model (Actor): the initial model in rlhf algorithm to generate reference logits to limit the update of actor
actor_optim (Optimizer): the optimizer to use for actor model
critic_optim (Optimizer): the optimizer to use for critic model
kl_coef (float, defaults to 0.1): the coefficient of kl divergence loss
train_batch_size (int, defaults to 8): the batch size to use for training
buffer_limit (int, defaults to 0): the max_size limitaiton of replay buffer
buffer_cpu_offload (bool, defaults to True): whether to offload replay buffer to cpu
eps_clip (float, defaults to 0.2): the clip coefficient of policy loss
value_clip (float, defaults to 0.4): the clip coefficient of value loss
experience_batch_size (int, defaults to 8): the batch size to use for experience generation
max_epochs (int, defaults to 1): the number of epochs of training process
tokenier (Callable, optional): the tokenizer to use for tokenizing the input
sample_replay_buffer (bool, defaults to False): whether to sample from replay buffer
dataloader_pin_memory (bool, defaults to True): whether to pin memory for data loader
callbacks (List[Callback], defaults to []): the callbacks to call during training process
generate_kwargs (dict, optional): the kwargs to use while model generating
"""
def __init__(self,
strategy: Strategy,
actor: Actor,
critic: Critic,
reward_model: nn.Module,
initial_model: Actor,
actor_optim: Optimizer,
critic_optim: Optimizer,
kl_coef: float = 0.1,
ptx_coef: float = 0.9,
train_batch_size: int = 8,
buffer_limit: int = 0,
buffer_cpu_offload: bool = True,
eps_clip: float = 0.2,
value_clip: float = 0.4,
experience_batch_size: int = 8,
max_epochs: int = 1,
tokenizer: Optional[Callable[[Any], dict]] = None,
sample_replay_buffer: bool = False,
dataloader_pin_memory: bool = True,
callbacks: List[Callback] = [],
**generate_kwargs) -> None:
experience_maker = NaiveExperienceMaker(actor, critic, reward_model, initial_model, kl_coef)
replay_buffer = NaiveReplayBuffer(train_batch_size, buffer_limit, buffer_cpu_offload)
generate_kwargs = _set_default_generate_kwargs(strategy, generate_kwargs, actor)
super().__init__(strategy, experience_maker, replay_buffer, experience_batch_size, max_epochs, tokenizer,
sample_replay_buffer, dataloader_pin_memory, callbacks, **generate_kwargs)
self.actor = actor
self.critic = critic
self.actor_loss_fn = PolicyLoss(eps_clip)
self.critic_loss_fn = ValueLoss(value_clip)
self.ptx_loss_fn = nn.CrossEntropyLoss(ignore_index=-100)
self.ptx_coef = ptx_coef
self.actor_optim = actor_optim
self.critic_optim = critic_optim
def training_step(self, experience: Experience) -> Dict[str, float]:
self.actor.train()
self.critic.train()
# policy loss
num_actions = experience.action_mask.size(1)
action_log_probs = self.actor(experience.sequences, num_actions, attention_mask=experience.attention_mask)
actor_loss = self.actor_loss_fn(action_log_probs,
experience.action_log_probs,
experience.advantages,
action_mask=experience.action_mask)
# ptx loss
if self.ptx_coef != 0:
ptx = next(iter(self.pretrain_dataloader))['input_ids'].to(torch.cuda.current_device())
label = next(iter(self.pretrain_dataloader))['labels'].to(torch.cuda.current_device())[:, 1:]
attention_mask = next(iter(self.pretrain_dataloader))['attention_mask'].to(torch.cuda.current_device())
ptx_log_probs = self.actor.get_base_model()(ptx, attention_mask=attention_mask)['logits'][..., :-1, :]
ptx_loss = self.ptx_loss_fn(ptx_log_probs.view(-1, ptx_log_probs.size(-1)), label.view(-1))
actor_loss = ptx_loss * self.ptx_coef + actor_loss * (1 - self.ptx_coef)
self.strategy.backward(actor_loss, self.actor, self.actor_optim)
self.strategy.optimizer_step(self.actor_optim)
self.actor_optim.zero_grad()
# value loss
values = self.critic(experience.sequences,
action_mask=experience.action_mask,
attention_mask=experience.attention_mask)
critic_loss = self.critic_loss_fn(values,
experience.values,
experience.reward,
action_mask=experience.action_mask)
self.strategy.backward(critic_loss, self.critic, self.critic_optim)
self.strategy.optimizer_step(self.critic_optim)
self.critic_optim.zero_grad()
return {'reward': experience.reward.mean().item()}
def _set_default_generate_kwargs(strategy: Strategy, generate_kwargs: dict, actor: Actor) -> None:
origin_model = strategy._unwrap_actor(actor)
new_kwargs = {**generate_kwargs}
# use huggingface models method directly
if 'prepare_inputs_fn' not in generate_kwargs and hasattr(origin_model, 'prepare_inputs_for_generation'):
new_kwargs['prepare_inputs_fn'] = origin_model.prepare_inputs_for_generation
if 'update_model_kwargs_fn' not in generate_kwargs:
new_kwargs['update_model_kwargs_fn'] = update_model_kwargs_fn
return new_kwargs
def save_model(self, path: str, only_rank0: bool = False, tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
self.strategy.save_model(model=self.actor, path=path, only_rank0=only_rank0, tokenizer=tokenizer)

View File

@ -0,0 +1,135 @@
from abc import ABC
from datetime import datetime
from typing import Optional
import pandas as pd
import torch
import torch.distributed as dist
from torch.optim import Optimizer, lr_scheduler
from torch.utils.data import DataLoader, Dataset, DistributedSampler
from tqdm import tqdm
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from .strategies import Strategy
from .utils import is_rank_0
class RewardModelTrainer(ABC):
"""
Trainer to use while training reward model.
Args:
model (torch.nn.Module): the model to train
strategy (Strategy): the strategy to use for training
optim(Optimizer): the optimizer to use for training
loss_fn (callable): the loss function to use for training
train_dataset (Dataset): the dataset to use for training
valid_dataset (Dataset): the dataset to use for validation
eval_dataset (Dataset): the dataset to use for evaluation
batch_size (int, defaults to 1): the batch size while training
max_epochs (int, defaults to 2): the number of epochs to train
"""
def __init__(
self,
model,
strategy: Strategy,
optim: Optimizer,
loss_fn,
train_dataset: Dataset,
valid_dataset: Dataset,
eval_dataset: Dataset,
batch_size: int = 1,
max_epochs: int = 1,
) -> None:
super().__init__()
self.strategy = strategy
self.epochs = max_epochs
train_sampler = None
if dist.is_initialized() and dist.get_world_size() > 1:
train_sampler = DistributedSampler(train_dataset, shuffle=True, seed=42, drop_last=True)
self.train_dataloader = DataLoader(train_dataset,
shuffle=(train_sampler is None),
sampler=train_sampler,
batch_size=batch_size)
self.valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=True)
self.eval_dataloader = DataLoader(eval_dataset, batch_size=batch_size, shuffle=True)
self.model = strategy.setup_model(model)
self.loss_fn = loss_fn
self.optimizer = strategy.setup_optimizer(optim, self.model)
self.scheduler = lr_scheduler.CosineAnnealingLR(self.optimizer, self.train_dataloader.__len__() // 100)
def eval_acc(self, dataloader):
dist = 0
on = 0
cnt = 0
self.model.eval()
with torch.no_grad():
for chosen_ids, c_mask, reject_ids, r_mask in dataloader:
chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device())
c_mask = c_mask.squeeze(1).to(torch.cuda.current_device())
reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device())
r_mask = r_mask.squeeze(1).to(torch.cuda.current_device())
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
reject_reward = self.model(reject_ids, attention_mask=r_mask)
for i in range(len(chosen_reward)):
cnt += 1
if chosen_reward[i] > reject_reward[i]:
on += 1
dist += (chosen_reward - reject_reward).mean().item()
dist_mean = dist / len(dataloader)
acc = on / cnt
self.model.train()
return dist_mean, acc
def fit(self):
time = datetime.now()
epoch_bar = tqdm(range(self.epochs), desc='Train epoch', disable=not is_rank_0())
for epoch in range(self.epochs):
step_bar = tqdm(range(self.train_dataloader.__len__()),
desc='Train step of epoch %d' % epoch,
disable=not is_rank_0())
# train
self.model.train()
cnt = 0
acc = 0
dist = 0
for chosen_ids, c_mask, reject_ids, r_mask in self.train_dataloader:
chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device())
c_mask = c_mask.squeeze(1).to(torch.cuda.current_device())
reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device())
r_mask = r_mask.squeeze(1).to(torch.cuda.current_device())
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
reject_reward = self.model(reject_ids, attention_mask=r_mask)
loss = self.loss_fn(chosen_reward, reject_reward)
self.strategy.backward(loss, self.model, self.optimizer)
self.strategy.optimizer_step(self.optimizer)
self.optimizer.zero_grad()
cnt += 1
if cnt == 100:
self.scheduler.step()
dist, acc = self.eval_acc(self.valid_dataloader)
cnt = 0
if is_rank_0():
log = pd.DataFrame([[step_bar.n, loss.item(), dist, acc]],
columns=['step', 'loss', 'dist', 'acc'])
log.to_csv('log_%s.csv' % time, mode='a', header=False, index=False)
step_bar.update()
step_bar.set_postfix({'dist': dist, 'acc': acc})
# eval
dist, acc = self.eval_acc(self.eval_dataloader)
if is_rank_0():
log = pd.DataFrame([[step_bar.n, loss.item(), dist, acc]], columns=['step', 'loss', 'dist', 'acc'])
log.to_csv('log.csv', mode='a', header=False, index=False)
epoch_bar.update()
step_bar.set_postfix({'dist': dist, 'acc': acc})
step_bar.close()
def save_model(self,
path: str,
only_rank0: bool = False,
tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
self.strategy.save_model(model=self.model, path=path, only_rank0=only_rank0, tokenizer=tokenizer)

View File

@ -0,0 +1,158 @@
import math
import time
from abc import ABC
from typing import Optional
import loralib as lora
import torch
import torch.distributed as dist
import wandb
from coati.models.loss import GPTLMLoss
from torch import nn
from torch.optim import Adam, Optimizer
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer import get_scheduler
from colossalai.logging import get_dist_logger
from .strategies import Strategy
from .utils import is_rank_0
class SFTTrainer(ABC):
"""
Trainer to use while training reward model.
Args:
model (torch.nn.Module): the model to train
strategy (Strategy): the strategy to use for training
optim(Optimizer): the optimizer to use for training
train_dataloader: the dataloader to use for training
eval_dataloader: the dataloader to use for evaluation
batch_size (int, defaults to 1): the batch size while training
max_epochs (int, defaults to 2): the number of epochs to train
optim_kwargs (dict, defaults to {'lr':1e-4}): the kwargs to use while initializing optimizer
"""
def __init__(
self,
model,
strategy: Strategy,
optim: Optimizer,
train_dataloader: DataLoader,
eval_dataloader: DataLoader = None,
batch_size: int = 1,
max_epochs: int = 2,
accimulation_steps: int = 8,
) -> None:
super().__init__()
self.strategy = strategy
self.epochs = max_epochs
self.train_dataloader = train_dataloader
self.eval_dataloader = eval_dataloader
self.model = strategy.setup_model(model)
if "DDP" in str(self.strategy):
self.model = self.model.module
self.optimizer = strategy.setup_optimizer(optim, self.model)
self.accimulation_steps = accimulation_steps
num_update_steps_per_epoch = len(train_dataloader) // self.accimulation_steps
max_steps = math.ceil(self.epochs * num_update_steps_per_epoch)
self.scheduler = get_scheduler("cosine",
self.optimizer,
num_warmup_steps=math.ceil(max_steps * 0.03),
num_training_steps=max_steps)
def fit(self, logger, log_interval=10):
wandb.init(project="Coati", name=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
wandb.watch(self.model)
total_loss = 0
# epoch_bar = tqdm(range(self.epochs), desc='Epochs', disable=not is_rank_0())
step_bar = tqdm(range(len(self.train_dataloader) // self.accimulation_steps * self.epochs),
desc=f'steps',
disable=not is_rank_0())
for epoch in range(self.epochs):
# process_bar = tqdm(range(len(self.train_dataloader)), desc=f'Train process for{epoch}', disable=not is_rank_0())
# train
self.model.train()
for batch_id, batch in enumerate(self.train_dataloader):
prompt_ids = batch["input_ids"].to(torch.cuda.current_device())
p_mask = batch["attention_mask"].to(torch.cuda.current_device())
labels = batch["labels"].to(torch.cuda.current_device())
# prompt_ids = prompt_ids.squeeze(1).cuda()
# p_mask = p_mask.squeeze(1).cuda()
# prompt_logits = self.model(prompt_ids, attention_mask=p_mask, labels=labels)
outputs = self.model(prompt_ids, attention_mask=p_mask, labels=labels)
loss = outputs.loss
prompt_logits = outputs.logits
if loss >= 2.5:
logger.warning(f"batch_id:{batch_id}, abnormal loss: {loss}")
loss = loss / self.accimulation_steps
self.strategy.backward(loss, self.model, self.optimizer)
total_loss += loss.item()
# gradient accumulation
if (batch_id + 1) % self.accimulation_steps == 0:
self.strategy.optimizer_step(self.optimizer)
self.optimizer.zero_grad()
self.scheduler.step()
wandb.log({
"loss": total_loss / self.accimulation_steps,
"lr": self.scheduler.get_last_lr()[0],
"epoch": epoch,
"batch_id": batch_id
})
total_loss = 0
step_bar.update()
# if batch_id % log_interval == 0:
# logger.info(f'Train Epoch {epoch}/{self.epochs} Batch {batch_id} Rank {dist.get_rank()} loss {loss.item()}')
# wandb.log({"loss": loss.item()})
# process_bar.update()
# eval
if self.eval_dataloader is not None:
self.model.eval()
with torch.no_grad():
loss_sum = 0
num_seen = 0
for batch in self.eval_dataloader:
prompt_ids = batch["input_ids"].to(torch.cuda.current_device())
p_mask = batch["attention_mask"].to(torch.cuda.current_device())
labels = batch["labels"].to(torch.cuda.current_device())
# prompt_ids = prompt_ids.squeeze(1).cuda()
# p_mask = p_mask.squeeze(1).cuda()
outputs = self.model(prompt_ids, attention_mask=p_mask, labels=labels)
loss = outputs.loss
# prompt_logits = outputs.logits
loss_sum += loss.item()
num_seen += prompt_ids.size(0)
loss_mean = loss_sum / num_seen
if dist.get_rank() == 0:
logger.info(f'Eval Epoch {epoch}/{self.epochs} loss {loss_mean}')
# epoch_bar.update()
def save_model(self,
path: str,
only_rank0: bool = False,
tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
self.strategy.save_model(model=self.model, path=path, only_rank0=only_rank0, tokenizer=tokenizer)

View File

@ -0,0 +1,6 @@
from .base import Strategy
from .colossalai import ColossalAIStrategy
from .ddp import DDPStrategy
from .naive import NaiveStrategy
__all__ = ['Strategy', 'NaiveStrategy', 'DDPStrategy', 'ColossalAIStrategy']

View File

@ -0,0 +1,136 @@
from abc import ABC, abstractmethod
from contextlib import nullcontext
from typing import Any, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from coati.models.base import LM, Actor, Critic, RewardModel
from coati.replay_buffer import ReplayBuffer
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from .sampler import DistributedSampler
ModelOptimPair = Tuple[nn.Module, Optimizer]
ModelOrModelOptimPair = Union[nn.Module, ModelOptimPair]
class Strategy(ABC):
"""
Base class for training strategies.
"""
def __init__(self) -> None:
super().__init__()
self.setup_distributed()
@abstractmethod
def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: Optimizer, **kwargs) -> None:
pass
@abstractmethod
def optimizer_step(self, optimizer: Optimizer, **kwargs) -> None:
pass
@abstractmethod
def setup_distributed(self) -> None:
pass
@abstractmethod
def setup_model(self, model: nn.Module) -> nn.Module:
pass
@abstractmethod
def setup_optimizer(self, optimizer: Optimizer, model: nn.Module) -> Optimizer:
pass
@abstractmethod
def setup_dataloader(self, replay_buffer: ReplayBuffer, pin_memory: bool = False) -> DataLoader:
pass
def model_init_context(self):
return nullcontext()
def prepare(
self, *models_or_model_optim_pairs: ModelOrModelOptimPair
) -> Union[List[ModelOrModelOptimPair], ModelOrModelOptimPair]:
"""Prepare models or model-optimizer-pairs based on each strategy.
Example::
>>> # when fine-tuning actor and critic
>>> (actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare((actor, actor_optim), (critic, critic_optim), reward_model, initial_model)
>>> # or when training reward model
>>> (reward_model, reward_model_optim) = strategy.prepare((reward_model, reward_model_optim))
>>> # or just inference
>>> actor, critic = strategy.prepare(actor, critic)
Returns:
Union[List[ModelOrModelOptimPair], ModelOrModelOptimPair]: Models or model-optimizer-pairs in the original order.
"""
def prepare_model(model: nn.Module):
if isinstance(model, Actor):
return Actor(self.setup_model(self._unwrap_model(model)))
return self.setup_model(self._unwrap_model(model))
rets = []
for arg in models_or_model_optim_pairs:
if isinstance(arg, tuple):
assert len(arg) == 2, f'Expect (model, optimizer) pair, got a tuple with size "{len(arg)}"'
model, optimizer = arg
model = prepare_model(model)
optimizer = self.setup_optimizer(optimizer, self._unwrap_model(model))
rets.append((model, optimizer))
elif isinstance(arg, nn.Module):
rets.append(prepare_model(arg))
else:
raise RuntimeError(f'Expect model or (model, optimizer) pair, got {type(arg)}')
if len(rets) == 1:
return rets[0]
return rets
@staticmethod
def _unwrap_model(model: nn.Module) -> nn.Module:
"""Useful for saving state dict. As actor is wrapped by Actor class again in `prepare()`, we should unwrap it before saving.
Args:
model (nn.Module): an actor or a critic
"""
if isinstance(model, Actor) or isinstance(model, LM):
return model.model
return model
@staticmethod
def _unwrap_actor(actor: Actor) -> nn.Module:
"""Get `actor.model` from a wrapped (by `prepare()`) actor. Useful for getting original huggingface model.
Args:
actor (Actor): a wrapped actor
"""
return Strategy._unwrap_model(actor)
@abstractmethod
def save_model(self,
model: nn.Module,
path: str,
only_rank0: bool = False,
tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
pass
@abstractmethod
def load_model(self, model: nn.Module, path: str, map_location: Any = None, strict: bool = True) -> None:
pass
@abstractmethod
def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False) -> None:
pass
@abstractmethod
def load_optimizer(self, optimizer: Optimizer, path: str, map_location: Any = None) -> None:
pass
def setup_sampler(self, dataset) -> DistributedSampler:
return DistributedSampler(dataset, 1, 0)

View File

@ -0,0 +1,213 @@
import warnings
from typing import Optional, Union
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from coati.models.base import LM, Actor, RewardModel
from coati.models.lora import LoraLinear
from torch.optim import Optimizer
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
import colossalai
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import CPUAdam, HybridAdam
from colossalai.nn.parallel import ZeroDDP, zero_model_wrapper, zero_optim_wrapper
from colossalai.nn.parallel.utils import get_static_torch_model
from colossalai.tensor import ProcessGroup, ShardSpec
from colossalai.utils import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
logger = get_dist_logger(__name__)
from .base import Strategy
from .ddp import DDPStrategy
class ColossalAIStrategy(DDPStrategy):
"""
The strategy for training with ColossalAI.
Args:
stage(int): The stage to use in ZeRO. Choose in (1, 2, 3)
precision(str): The precision to use. Choose in ('fp32', 'fp16'). Stage 3 only supports fp16.
seed(int): The seed for the random number generator.
shard_init(bool): Whether to shard the model parameters during initialization. Only for ZeRO-3.
This is not compativle with `from_pretrained()`. We temporarily disable this and will support it in the future.
placement_policy(str): The placement policy for gemini. Choose in ('cpu', 'cuda')
If it is cpu, parameters, gradients and optimizer states will be offloaded to CPU,
If it is cuda, they will not be offloaded, which means max CUDA memory will be used. It is the fastest.
pin_memory(bool): Whether to pin the memory for the data loader. Only for ZeRO-3.
force_outputs_fp32(bool): Whether to force the outputs to be fp32. Only for ZeRO-3.
search_range_mb(int): The search range in MB for the chunk size. Only for ZeRO-3.
hidden_dim(optional, int): The hidden dimension for the gemini. Only for ZeRO-3.
min_chunk_size_mb(float): The minimum chunk size in MB. Only for ZeRO-3.
gpu_margin_mem_ratio(float): The margin memory ratio for the GPU. Only for ZeRO-3.
reduce_bugket_size(int): The reduce bucket size in bytes. Only for ZeRO-1 and ZeRO-2.
overlap_communication(bool): Whether to overlap communication and computation. Only for ZeRO-1 and ZeRO-2.
initial_scale(float): The initial scale for the optimizer.
growth_factor(float): The growth factor for the optimizer.
backoff_factor(float): The backoff factor for the optimizer.
growth_interval(int): The growth interval for the optimizer.
hysteresis(int): The hysteresis for the optimizer.
min_scale(float): The minimum scale for the optimizer.
max_scale(float): The maximum scale for the optimizer.
max_norm(float): The maximum norm for the optimizer.
norm_type(float): The norm type for the optimizer.
"""
def __init__(
self,
stage: int = 3,
precision: str = 'fp16',
seed: int = 42,
shard_init: bool = False, # only for stage 3
placement_policy: str = 'cuda',
pin_memory: bool = True, # only for stage 3
force_outputs_fp32: bool = False, # only for stage 3
search_range_mb: int = 32, # only for stage 3
hidden_dim: Optional[int] = None, # only for stage 3
min_chunk_size_mb: float = 32, # only for stage 3
gpu_margin_mem_ratio: float = 0.0, # only for stage 3
reduce_bucket_size: int = 12 * 1024**2, # only for stage 1&2
overlap_communication: bool = True, # only for stage 1&2
initial_scale: float = 2**16,
growth_factor: float = 2,
backoff_factor: float = 0.5,
growth_interval: int = 1000,
hysteresis: int = 2,
min_scale: float = 1,
max_scale: float = 2**32,
max_norm: float = 0.0,
norm_type: float = 2.0) -> None:
super().__init__(seed)
assert placement_policy in ('cpu', 'cuda'), f'Unsupported placement policy "{placement_policy}"'
assert precision in ('fp32', 'fp16'), f'Unsupported precision "{precision}"'
self.stage = stage
# TODO(ver217): support shard_init when using from_pretrained()
if shard_init:
warnings.warn(
f'Shard init is not supported model.from_pretrained() yet. Please load weights after strategy.prepare()'
)
if stage == 3 and precision == 'fp32':
warnings.warn(f'Stage 3 only supports fp16. Precision is set to fp16.')
precision = 'fp16'
self.precision = precision
self.shard_init = shard_init
self.gemini_config = dict(device=get_current_device(),
placement_policy=placement_policy,
pin_memory=pin_memory,
force_outputs_fp32=force_outputs_fp32,
strict_ddp_mode=shard_init,
search_range_mb=search_range_mb,
hidden_dim=hidden_dim,
min_chunk_size_mb=min_chunk_size_mb)
if stage == 3:
self.zero_optim_config = dict(gpu_margin_mem_ratio=gpu_margin_mem_ratio)
else:
self.zero_optim_config = dict(reduce_bucket_size=reduce_bucket_size,
overlap_communication=overlap_communication,
cpu_offload=(placement_policy == 'cpu'))
self.optim_kwargs = dict(initial_scale=initial_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
min_scale=min_scale,
max_scale=max_scale,
max_norm=max_norm,
norm_type=norm_type)
def setup_distributed(self) -> None:
colossalai.launch_from_torch({}, seed=self.seed)
def model_init_context(self):
if self.stage == 3:
world_size = dist.get_world_size()
shard_pg = ProcessGroup(tp_degree=world_size) if self.shard_init else None
default_dist_spec = ShardSpec([-1], [world_size]) if self.shard_init else None
return ColoInitContext(device=get_current_device(),
dtype=torch.half,
default_pg=shard_pg,
default_dist_spec=default_dist_spec)
return super().model_init_context()
def setup_model(self, model: nn.Module) -> nn.Module:
model = zero_model_wrapper(model, zero_stage=self.stage, gemini_config=self.gemini_config)
if self.stage != 3 and self.precision == 'fp16':
model = model.half()
return model
def setup_optimizer(self, optimizer: optim.Optimizer, model: nn.Module) -> optim.Optimizer:
assert isinstance(optimizer, (CPUAdam, HybridAdam)), f'Unsupported optimizer {type(optimizer)}'
return zero_optim_wrapper(model, optimizer, optim_config=self.zero_optim_config, **self.optim_kwargs)
def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: optim.Optimizer, **kwargs) -> None:
optimizer.backward(loss)
def optimizer_step(self, optimizer: optim.Optimizer, **kwargs) -> None:
optimizer.step()
@staticmethod
def _unwrap_actor(actor: Actor) -> nn.Module:
model: Union[nn.Module, ZeroDDP] = Strategy._unwrap_actor(actor)
if isinstance(model, ZeroDDP):
return model.module
return model
def _unwrap_model(self, model: Union[nn.Module, ZeroDDP]) -> nn.Module:
if isinstance(model, ZeroDDP) and self.stage == 3:
logger.info(f"model type: {type(model)}, get static torch model")
model = get_static_torch_model(model)
logger.info(f"unwrapped_model type: {type(model)}")
return super()._unwrap_model(model)
def save_model(self,
model: nn.Module,
path: str,
only_rank0: bool = True,
tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
if only_rank0 and dist.get_rank() != 0:
return None
unwrapped_model = self._unwrap_model(model)
# TODO : better way to get torch model from gemini model
# to get torch model from gemini model
for module in unwrapped_model.modules():
if isinstance(module, LoraLinear):
module.merge_weights = True
module.eval()
if isinstance(unwrapped_model, RewardModel):
state_dict = unwrapped_model.state_dict()
if only_rank0 and dist.get_rank() != 0:
return
torch.save(state_dict, path)
else:
try:
if isinstance(unwrapped_model, LM):
unwrapped_model = unwrapped_model.model
logger.info(f'Saving model to {path}', ranks=[0])
unwrapped_model.save_pretrained(path)
logger.info(f'Model saved to {path} Successfully', ranks=[0])
if tokenizer is not None:
logger.info(f'Saving tokenizer to {path}', ranks=[0])
tokenizer.save_pretrained(path)
logger.info(f'Tokenizer saved to {path} Successfully', ranks=[0])
except AttributeError:
state_dict = unwrapped_model.state_dict()
if only_rank0 and dist.get_rank() != 0:
return
torch.save(state_dict, path)
def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False) -> None:
if only_rank0:
raise RuntimeError(
f'Optimizer states are sharded when using ColossalAIStrategy. Only rank0 is not supported.')
torch.save(optimizer.state_dict(), path)

View File

@ -0,0 +1,93 @@
import os
import random
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
from coati.models.base import Actor
from coati.models.lora import LoraLinear
from coati.replay_buffer import ReplayBuffer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from .base import Strategy
from .naive import NaiveStrategy
from .sampler import DistributedSampler
class DDPStrategy(NaiveStrategy):
"""
Strategy for distributed training using torch.distributed.
"""
def __init__(self, seed: int = 42) -> None:
self.seed = seed
super().__init__()
def setup_distributed(self) -> None:
try:
rank = int(os.environ['RANK'])
local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])
host = os.environ['MASTER_ADDR']
port = int(os.environ['MASTER_PORT'])
except KeyError as e:
raise RuntimeError(
f"Could not find {e} in the torch environment, visit https://www.colossalai.org/ for more information on launching with torch"
)
dist.init_process_group('nccl', init_method=f'tcp://[{host}]:{port}', world_size=world_size, rank=rank)
self.set_seed(self.seed)
torch.cuda.set_device(local_rank)
def set_seed(self, seed: int) -> None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def setup_model(self, model: nn.Module) -> nn.Module:
device = torch.cuda.current_device()
return DDP(model, device_ids=[device])
def setup_dataloader(self, replay_buffer: ReplayBuffer, pin_memory: bool = False) -> DataLoader:
# DDP only mode, replay buffers on each rank are different.
# sampler = DistributedSampler(replay_buffer,
# num_replicas=dist.get_world_size(),
# rank=dist.get_rank(),
# shuffle=True,
# seed=self.seed,
# drop_last=True)
return DataLoader(
replay_buffer,
batch_size=replay_buffer.sample_batch_size,
# sampler=sampler,
shuffle=True,
drop_last=True,
pin_memory=pin_memory,
collate_fn=replay_buffer.collate_fn)
@staticmethod
def _unwrap_actor(actor: Actor) -> nn.Module:
model: DDP = Strategy._unwrap_actor(actor)
return model.module
def save_model(self, model: nn.Module, path: str, only_rank0: bool = False) -> None:
for module in model.modules():
if isinstance(module, LoraLinear):
module.merge_weights = True
module.eval()
if only_rank0 and dist.get_rank() != 0:
return
model = model.model.module
state_dict = model.state_dict()
torch.save(state_dict, path)
def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False) -> None:
if only_rank0 and dist.get_rank() != 0:
return
super().save_optimizer(optimizer, path, only_rank0)
def setup_sampler(self, dataset) -> DistributedSampler:
return DistributedSampler(dataset, dist.get_world_size(), dist.get_rank())

View File

@ -0,0 +1,55 @@
from typing import Any
import torch
import torch.nn as nn
import torch.optim as optim
from coati.replay_buffer import ReplayBuffer
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from .base import Strategy
class NaiveStrategy(Strategy):
"""
Strategy for single GPU. No parallelism is used.
"""
def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: optim.Optimizer, **kwargs) -> None:
loss.backward()
def optimizer_step(self, optimizer: optim.Optimizer, **kwargs) -> None:
optimizer.step()
def setup_distributed(self) -> None:
pass
def setup_model(self, model: nn.Module) -> nn.Module:
return model
def setup_optimizer(self, optimizer: optim.Optimizer, model: nn.Module) -> optim.Optimizer:
return optimizer
def setup_dataloader(self, replay_buffer: ReplayBuffer, pin_memory: bool = False) -> DataLoader:
return DataLoader(replay_buffer,
batch_size=replay_buffer.sample_batch_size,
shuffle=True,
drop_last=True,
pin_memory=pin_memory,
collate_fn=replay_buffer.collate_fn)
def save_model(self, model: nn.Module, path: str, only_rank0: bool = False) -> None:
unwrapped_model = self._unwrap_model(model)
torch.save(unwrapped_model.state_dict(), path)
def load_model(self, model: nn.Module, path: str, map_location: Any = None, strict: bool = True) -> None:
unwrapped_model = self._unwrap_model(model)
state_dict = torch.load(path, map_location=map_location)
unwrapped_model.load_state_dict(state_dict, strict=strict)
def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False) -> None:
torch.save(optimizer.state_dict(), path)
def load_optimizer(self, optimizer: Optimizer, path: str, map_location: Any = None) -> None:
state_dict = torch.load(path, map_location=map_location)
optimizer.load_state_dict(state_dict)

View File

@ -0,0 +1,32 @@
import math
import numpy as np
class DistributedSampler:
def __init__(self, dataset, num_replicas: int, rank: int) -> None:
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
if len(self.dataset) % self.num_replicas != 0:
self.num_samples = math.ceil(
(len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type]
)
else:
self.num_samples = math.ceil(len(self.dataset) / self.num_replicas)
self.total_size = self.num_samples * self.num_replicas
indices = list(range(len(self.dataset)))
indices = indices[:self.total_size]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
self.indices = indices
def sample(self, batch_size: int) -> list:
sampled_indices = np.random.choice(self.indices, batch_size, replace=False)
return [self.dataset[idx] for idx in sampled_indices]

View File

@ -0,0 +1,5 @@
import torch.distributed as dist
def is_rank_0() -> bool:
return not dist.is_initialized() or dist.get_rank() == 0

View File

@ -0,0 +1,3 @@
from .tokenizer_utils import prepare_llama_tokenizer_and_embedding, smart_tokenizer_and_embedding_resize
__all__ = ['smart_tokenizer_and_embedding_resize', 'prepare_llama_tokenizer_and_embedding']

View File

@ -0,0 +1,78 @@
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict
import transformers
from ..models.llama.llama_lm import LlamaLM
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "</s>"
DEFAULT_UNK_TOKEN = "</s>"
def prepare_llama_tokenizer_and_embedding(
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
special_tokens_dict: Dict = dict(pad_token=DEFAULT_PAD_TOKEN),
):
"""prepare llama tokenizer and embedding.
"""
if tokenizer.pad_token is None:
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN),
tokenizer=tokenizer,
model=model,
)
tokenizer.add_special_tokens({
"eos_token": DEFAULT_EOS_TOKEN,
"bos_token": DEFAULT_BOS_TOKEN,
"unk_token": DEFAULT_UNK_TOKEN,
})
return tokenizer
def smart_tokenizer_and_embedding_resize(
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
special_tokens_dict: Dict = dict(pad_token=DEFAULT_PAD_TOKEN),
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
if tokenizer.pad_token is None:
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
if isinstance(model, LlamaLM):
model = model.get_base_model()
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg

View File

@ -0,0 +1,141 @@
# Examples
## Install requirements
```shell
pip install -r requirements.txt
```
## Train the reward model (Stage 2)
Use these code to train your reward model.
```shell
# Take naive reward model training with opt-350m as example
python train_reward_model.py --pretrain "facebook/opt-350m" --model 'opt' --strategy naive
# use colossalai_zero2
torchrun --standalone --nproc_per_node=2 train_reward_model.py --pretrain "facebook/opt-350m" --model 'opt' --strategy colossalai_zero2
```
### Features and tricks in RM training
- We support [Anthropic/hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf)and[rm-static](https://huggingface.co/datasets/Dahoas/rm-static) datasets.
- We support 2 kinds of loss_function named 'log_sig'(used by OpenAI) and 'log_exp'(used by Anthropic).
- We change the loss to valid_acc and pair_dist to monitor progress during training.
- We add special token to the end of the sequence to get better result.
- We use cosine-reducing lr-scheduler for RM training.
- We set value_head as 1 liner layer and initialize the weight of value_head using N(01/(d_model + 1)) distribution.
- We train a Bloom-560m reward model for 1 epoch and find the test acc of the model achieve the performance mentions in [Anthropics paper](https://arxiv.org/abs/2204.05862).
### Experiment result
Model performance in [Anthropics paper](https://arxiv.org/abs/2204.05862):
<div align=center> <img width="512" alt="image" src="https://user-images.githubusercontent.com/70618399/225263321-8d64c3a8-6877-4cc8-9b61-0e1c52d3d94f.png">
<div align=left>Our training & test result of bloom-560m for 1 epoch:
<div align=center> <img width="512" alt="image" src="https://user-images.githubusercontent.com/70618399/225262950-a7f0a686-25de-44ec-98f2-11b83ea86674.png">
<div align=left>
## Train with dummy prompt data (Stage 3)
This script supports 4 kinds of strategies:
- naive
- ddp
- colossalai_zero2
- colossalai_gemini
It uses random generated prompt data.
Naive strategy only support single GPU training:
```shell
python train_dummy.py --strategy naive
# display cli help
python train_dummy.py -h
```
DDP strategy and ColossalAI strategy support multi GPUs training:
```shell
# run DDP on 2 GPUs
torchrun --standalone --nproc_per_node=2 train_dummy.py --strategy ddp
# run ColossalAI on 2 GPUs
torchrun --standalone --nproc_per_node=2 train_dummy.py --strategy colossalai_zero2
```
## Train with real prompt data (Stage 3)
We use [awesome-chatgpt-prompts](https://huggingface.co/datasets/fka/awesome-chatgpt-prompts) as example dataset. It is a small dataset with hundreds of prompts.
You should download `prompts.csv` first.
This script also supports 4 strategies.
```shell
# display cli help
python train_dummy.py -h
# run naive on 1 GPU
python train_prompts.py prompts.csv --strategy naive
# run DDP on 2 GPUs
torchrun --standalone --nproc_per_node=2 train_prompts.py prompts.csv --strategy ddp
# run ColossalAI on 2 GPUs
torchrun --standalone --nproc_per_node=2 train_prompts.py prompts.csv --strategy colossalai_zero2
```
## Inference example(After Stage3)
We support naive inference demo after training.
```shell
# inference, using pretrain path to configure model
python inference.py --model_path <your actor model path> --model <your model type> --pretrain <your pretrain model name/path>
# example
python inference.py --model_path ./actor_checkpoint_prompts.pt --pretrain bigscience/bloom-560m --model bloom
```
## Attention
The examples is just a demo for testing our progress of RM and PPO training.
#### data
- [x] [rm-static](https://huggingface.co/datasets/Dahoas/rm-static)
- [x] [hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [ ] [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback)
- [ ] [openai/webgpt_comparisons](https://huggingface.co/datasets/openai/webgpt_comparisons)
- [ ] [Dahoas/instruct-synthetic-prompt-responses](https://huggingface.co/datasets/Dahoas/instruct-synthetic-prompt-responses)
## Support Model
### GPT
- [x] GPT2-S (s)
- [x] GPT2-M (m)
- [x] GPT2-L (l)
- [ ] GPT2-XL (xl)
- [x] GPT2-4B (4b)
- [ ] GPT2-6B (6b)
- [ ] GPT2-8B (8b)
- [ ] GPT2-10B (10b)
- [ ] GPT2-12B (12b)
- [ ] GPT2-15B (15b)
- [ ] GPT2-18B (18b)
- [ ] GPT2-20B (20b)
- [ ] GPT2-24B (24b)
- [ ] GPT2-28B (28b)
- [ ] GPT2-32B (32b)
- [ ] GPT2-36B (36b)
- [ ] GPT2-40B (40b)
- [ ] GPT3 (175b)
### BLOOM
- [x] [BLOOM-560m](https://huggingface.co/bigscience/bloom-560m)
- [x] [BLOOM-1b1](https://huggingface.co/bigscience/bloom-1b1)
- [x] [BLOOM-3b](https://huggingface.co/bigscience/bloom-3b)
- [x] [BLOOM-7b](https://huggingface.co/bigscience/bloom-7b1)
- [ ] BLOOM-175b
### OPT
- [x] [OPT-125M](https://huggingface.co/facebook/opt-125m)
- [x] [OPT-350M](https://huggingface.co/facebook/opt-350m)
- [ ] [OPT-1.3B](https://huggingface.co/facebook/opt-1.3b)
- [ ] [OPT-2.7B](https://huggingface.co/facebook/opt-2.7b)
- [ ] [OPT-6.7B](https://huggingface.co/facebook/opt-6.7b)
- [ ] [OPT-13B](https://huggingface.co/facebook/opt-13b)
- [ ] [OPT-30B](https://huggingface.co/facebook/opt-30b)

View File

@ -0,0 +1,59 @@
import argparse
import torch
from coati.models.bloom import BLOOMActor
from coati.models.gpt import GPTActor
from coati.models.opt import OPTActor
from transformers import AutoTokenizer
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
def eval(args):
# configure model
if args.model == 'gpt2':
actor = GPTActor(pretrained=args.pretrain).to(torch.cuda.current_device())
elif args.model == 'bloom':
actor = BLOOMActor(pretrained=args.pretrain).to(torch.cuda.current_device())
elif args.model == 'opt':
actor = OPTActor(pretrained=args.pretrain).to(torch.cuda.current_device())
else:
raise ValueError(f'Unsupported model "{args.model}"')
state_dict = torch.load(args.model_path)
actor.model.load_state_dict(state_dict)
# configure tokenizer
if args.model == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'bloom':
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'opt':
tokenizer = AutoTokenizer.from_pretrained('facebook/opt-350m')
else:
raise ValueError(f'Unsupported model "{args.model}"')
actor.eval()
input = args.input
input_ids = tokenizer.encode(input, return_tensors='pt').to(torch.cuda.current_device())
outputs = actor.generate(input_ids,
max_length=args.max_length,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1)
output = tokenizer.batch_decode(outputs[0], skip_special_tokens=True)
print(output)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt'])
# We suggest to use the pretrained model from HuggingFace, use pretrain to configure model
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--model_path', type=str, default=None)
parser.add_argument('--input', type=str, default='Question: How are you ? Answer:')
parser.add_argument('--max_length', type=int, default=100)
args = parser.parse_args()
eval(args)

View File

@ -0,0 +1,2 @@
pandas>=1.4.1
sentencepiece

View File

@ -0,0 +1,97 @@
#!/usr/bin/env bash
set -xue
if [ -z "$PROMPT_PATH" ]; then
echo "Please set \$PROMPT_PATH to the path to prompts csv."
exit 1
fi
BASE=$(realpath $(dirname $0))
export OMP_NUM_THREADS=8
# install requirements
pip install -r ${BASE}/requirements.txt
# train dummy
python ${BASE}/train_dummy.py --strategy naive --num_episodes 1 \
--max_timesteps 2 --update_timesteps 2 \
--max_epochs 1 --train_batch_size 2 --lora_rank 4
torchrun --standalone --nproc_per_node=2 ${BASE}/train_dummy.py \
--strategy colossalai_gemini --num_episodes 1 --max_timesteps 2 \
--update_timesteps 2 --max_epochs 1 --train_batch_size 2\
--pretrain 'facebook/opt-350m' --model opt --lora_rank 4\
--save_path ${BASE}/actor_checkpoint_dummy.pt
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_dummy.pt --pretrain 'facebook/opt-350m' --model opt
torchrun --standalone --nproc_per_node=2 ${BASE}/train_dummy.py \
--strategy ddp --num_episodes 1 --max_timesteps 2 \
--update_timesteps 2 --max_epochs 1 --train_batch_size 2\
--pretrain 'facebook/opt-350m' --model opt --lora_rank 4\
--save_path ${BASE}/actor_checkpoint_dummy.pt
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_dummy.pt --pretrain 'facebook/opt-350m' --model opt
torchrun --standalone --nproc_per_node=2 ${BASE}/train_dummy.py \
--strategy colossalai_zero2 --num_episodes 1 --max_timesteps 2 \
--update_timesteps 2 --max_epochs 1 --train_batch_size 2\
--pretrain 'gpt2' --model gpt2 --lora_rank 4\
--save_path ${BASE}/actor_checkpoint_dummy.pt
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_dummy.pt --pretrain 'gpt2' --model gpt2
rm -rf ${BASE}/actor_checkpoint_dummy.pt
# train prompts
python ${BASE}/train_prompts.py $PROMPT_PATH --strategy naive --num_episodes 1 \
--max_timesteps 2 --update_timesteps 2 \
--max_epochs 1 --train_batch_size 2 --lora_rank 4
torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py $PROMPT_PATH \
--strategy colossalai_zero2 --num_episodes 1 --max_timesteps 2 \
--update_timesteps 2 --max_epochs 1 --train_batch_size 2\
--pretrain 'facebook/opt-350m' --model opt --lora_rank 4\
--save_path ${BASE}/actor_checkpoint_prompts.pt
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_prompts.pt --pretrain 'facebook/opt-350m' --model opt
torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py $PROMPT_PATH \
--strategy ddp --num_episodes 1 --max_timesteps 2 \
--update_timesteps 2 --max_epochs 1 --train_batch_size 2\
--pretrain 'gpt2' --model gpt2 --lora_rank 4\
--save_path ${BASE}/actor_checkpoint_prompts.pt
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_prompts.pt --pretrain 'gpt2' --model gpt2
torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py $PROMPT_PATH \
--strategy colossalai_gemini --num_episodes 1 --max_timesteps 2 \
--update_timesteps 2 --max_epochs 1 --train_batch_size 2\
--pretrain 'gpt2' --model gpt2 --lora_rank 4\
--save_path ${BASE}/actor_checkpoint_prompts.pt
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_prompts.pt --pretrain 'gpt2' --model gpt2
rm -rf ${BASE}/actor_checkpoint_prompts.pt
# train rm
torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \
--pretrain 'facebook/opt-350m' --model 'opt' \
--strategy colossalai_zero2 --loss_fn 'log_sig'\
--dataset 'Anthropic/hh-rlhf' --subset 'harmless-base'\
--test True --lora_rank 4
torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \
--pretrain 'gpt2' --model 'gpt2' \
--strategy colossalai_gemini --loss_fn 'log_exp'\
--dataset 'Dahoas/rm-static' --test True --lora_rank 4
torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \
--pretrain 'bigscience/bloom-560m' --model 'bloom' \
--strategy colossalai_zero2 --loss_fn 'log_sig'\
--dataset 'Anthropic/hh-rlhf' --subset 'harmless-base'\
--test True --lora_rank 4
torchrun --standalone --nproc_per_node=2 ${BASE}/train_reward_model.py \
--pretrain 'microsoft/deberta-v3-large' --model 'deberta' \
--strategy colossalai_zero2 --loss_fn 'log_sig'\
--dataset 'Anthropic/hh-rlhf' --subset 'harmless-base'\
--test True --lora_rank 4
rm -rf ${BASE}/rm_ckpt.pt

View File

@ -0,0 +1,148 @@
import argparse
from copy import deepcopy
import torch
from coati.models.base import RewardModel
from coati.models.bloom import BLOOMActor, BLOOMCritic
from coati.models.gpt import GPTActor, GPTCritic
from coati.models.opt import OPTActor, OPTCritic
from coati.trainer import PPOTrainer
from coati.trainer.callbacks import SaveCheckpoint
from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
from torch.optim import Adam
from transformers import AutoTokenizer, BloomTokenizerFast
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from colossalai.nn.optimizer import HybridAdam
def preprocess_batch(samples):
input_ids = torch.stack(samples)
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
return {'input_ids': input_ids, 'attention_mask': attention_mask}
def main(args):
# configure strategy
if args.strategy == 'naive':
strategy = NaiveStrategy()
elif args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda', initial_scale=2**5)
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
# configure model
with strategy.model_init_context():
if args.model == 'gpt2':
actor = GPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
critic = GPTCritic(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
elif args.model == 'bloom':
actor = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
critic = BLOOMCritic(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
elif args.model == 'opt':
actor = OPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
critic = OPTCritic(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
else:
raise ValueError(f'Unsupported model "{args.model}"')
initial_model = deepcopy(actor).to(torch.cuda.current_device())
reward_model = RewardModel(deepcopy(critic.model), deepcopy(critic.value_head)).to(torch.cuda.current_device())
# configure optimizer
if args.strategy.startswith('colossalai'):
actor_optim = HybridAdam(actor.parameters(), lr=5e-6)
critic_optim = HybridAdam(critic.parameters(), lr=5e-6)
else:
actor_optim = Adam(actor.parameters(), lr=5e-6)
critic_optim = Adam(critic.parameters(), lr=5e-6)
# configure tokenizer
if args.model == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'bloom':
tokenizer = BloomTokenizerFast.from_pretrained(args.pretrain)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'opt':
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
else:
raise ValueError(f'Unsupported model "{args.model}"')
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare(
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model)
callbacks = []
if args.save_ckpt_path:
ckpt_callback = SaveCheckpoint(
args.save_ckpt_path,
args.save_ckpt_interval,
strategy,
actor,
critic,
actor_optim,
critic_optim,
)
callbacks.append(ckpt_callback)
# configure trainer
trainer = PPOTrainer(strategy,
actor,
critic,
reward_model,
initial_model,
actor_optim,
critic_optim,
max_epochs=args.max_epochs,
train_batch_size=args.train_batch_size,
tokenizer=preprocess_batch,
max_length=128,
do_sample=True,
temperature=1.0,
top_k=50,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
callbacks=callbacks)
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 64), device=torch.cuda.current_device())
trainer.fit(random_prompts,
num_episodes=args.num_episodes,
max_timesteps=args.max_timesteps,
update_timesteps=args.update_timesteps)
# save model checkpoint after fitting
trainer.save_model(args.save_path, only_rank0=True)
# save optimizer checkpoint on all ranks
if args.need_optim_ckpt:
strategy.save_optimizer(actor_optim,
'actor_optim_checkpoint_dummy_%d.pt' % (torch.cuda.current_device()),
only_rank0=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--strategy',
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
default='naive')
parser.add_argument('--model', type=str, default='gpt2', choices=['gpt2', 'bloom', 'opt'])
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--save_path', type=str, default='actor_checkpoint_dummy.pt')
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
parser.add_argument('--num_episodes', type=int, default=50)
parser.add_argument('--max_timesteps', type=int, default=10)
parser.add_argument('--update_timesteps', type=int, default=10)
parser.add_argument('--max_epochs', type=int, default=5)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--experience_batch_size', type=int, default=8)
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
parser.add_argument('--save_ckpt_path',
type=str,
default=None,
help="path to save checkpoint, None means not to save")
parser.add_argument('--save_ckpt_interval', type=int, default=1, help="the interval of episode to save checkpoint")
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,18 @@
set_n_least_used_CUDA_VISIBLE_DEVICES() {
local n=${1:-"9999"}
echo "GPU Memory Usage:"
local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv \
| tail -n +2 \
| nl -v 0 \
| tee /dev/tty \
| sort -g -k 2 \
| awk '{print $1}' \
| head -n $n)
export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g')
echo "Now CUDA_VISIBLE_DEVICES is set to:"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
}
set_n_least_used_CUDA_VISIBLE_DEVICES 2
torchrun --standalone --nproc_per_node=2 train_dummy.py --strategy colossalai_zero2

View File

@ -0,0 +1,199 @@
import argparse
import pandas as pd
import torch
import torch.distributed as dist
from coati.dataset import DataCollatorForSupervisedDataset, PromptDataset, SupervisedDataset
from coati.models.bloom import BLOOMRM, BLOOMActor, BLOOMCritic
from coati.models.gpt import GPTRM, GPTActor, GPTCritic
from coati.models.llama import LlamaActor
from coati.models.opt import OPTRM, OPTActor, OPTCritic
from coati.trainer import PPOTrainer
from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
from coati.utils import prepare_llama_tokenizer_and_embedding
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from transformers import AutoTokenizer, BloomTokenizerFast, GPT2Tokenizer, LlamaTokenizer
from colossalai.nn.optimizer import HybridAdam
def main(args):
# configure strategy
if args.strategy == 'naive':
strategy = NaiveStrategy()
elif args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda', initial_scale=2**5)
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
if args.rm_path is not None:
state_dict = torch.load(args.rm_path, map_location='cpu')
# configure model
if args.model == 'gpt2':
initial_model = GPTActor(pretrained=args.pretrain)
reward_model = GPTRM(pretrained=args.rm_pretrain)
elif args.model == 'bloom':
initial_model = BLOOMActor(pretrained=args.pretrain)
reward_model = BLOOMRM(pretrained=args.rm_pretrain)
elif args.model == 'opt':
initial_model = OPTActor(pretrained=args.pretrain)
reward_model = OPTRM(pretrained=args.rm_pretrain)
elif args.model == 'llama':
initial_model = LlamaActor(pretrained=args.pretrain)
reward_model = BLOOMRM(pretrained=args.rm_pretrain)
else:
raise ValueError(f'Unsupported model "{args.model}"')
if args.rm_path is not None:
reward_model.load_state_dict(state_dict)
if args.strategy != 'colossalai_gemini':
initial_model.to(torch.float16).to(torch.cuda.current_device())
reward_model.to(torch.float16).to(torch.cuda.current_device())
with strategy.model_init_context():
if args.model == 'gpt2':
actor = GPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
critic = GPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
elif args.model == 'bloom':
actor = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
critic = BLOOMCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
elif args.model == 'opt':
actor = OPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
critic = OPTCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
elif args.model == 'llama':
actor = LlamaActor(pretrained=args.pretrain, lora_rank=args.lora_rank)
critic = BLOOMCritic(pretrained=args.rm_pretrain, lora_rank=args.lora_rank, use_action_mask=True)
else:
raise ValueError(f'Unsupported model "{args.model}"')
if args.rm_path is not None:
critic.load_state_dict(state_dict)
del state_dict
if args.strategy != 'colossalai_gemini':
critic.to(torch.float16).to(torch.cuda.current_device())
actor.to(torch.float16).to(torch.cuda.current_device())
# configure optimizer
if args.strategy.startswith('colossalai'):
actor_optim = HybridAdam(actor.parameters(), lr=1e-7)
critic_optim = HybridAdam(critic.parameters(), lr=1e-7)
else:
actor_optim = Adam(actor.parameters(), lr=1e-7)
critic_optim = Adam(critic.parameters(), lr=1e-7)
# configure tokenizer
if args.model == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
elif args.model == 'bloom':
tokenizer = BloomTokenizerFast.from_pretrained('bigscience/bloom-560m')
elif args.model == 'opt':
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
elif args.model == 'llama':
tokenizer = LlamaTokenizer.from_pretrained(args.pretrain)
tokenizer.eos_token = '<\s>'
else:
raise ValueError(f'Unsupported model "{args.model}"')
if args.model == 'llama':
tokenizer = prepare_llama_tokenizer_and_embedding(tokenizer, actor)
else:
tokenizer.pad_token = tokenizer.eos_token
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
prompt_dataset = PromptDataset(tokenizer=tokenizer, data_path=args.prompt_path, max_datasets_size=16384)
if dist.is_initialized() and dist.get_world_size() > 1:
prompt_sampler = DistributedSampler(prompt_dataset, shuffle=True, seed=42, drop_last=True)
prompt_dataloader = DataLoader(prompt_dataset,
shuffle=(prompt_sampler is None),
sampler=prompt_sampler,
batch_size=args.train_batch_size)
pretrain_dataset = SupervisedDataset(tokenizer=tokenizer, data_path=args.pretrain_dataset, max_datasets_size=16384)
if dist.is_initialized() and dist.get_world_size() > 1:
pretrain_sampler = DistributedSampler(pretrain_dataset, shuffle=True, seed=42, drop_last=True)
pretrain_dataloader = DataLoader(pretrain_dataset,
shuffle=(pretrain_sampler is None),
sampler=pretrain_sampler,
batch_size=args.ptx_batch_size,
collate_fn=data_collator)
def tokenize_fn(texts):
# MUST padding to max length to ensure inputs of all ranks have the same length
# Different length may lead to hang when using gemini, as different generation steps
batch = tokenizer(texts, return_tensors='pt', max_length=96, padding='max_length', truncation=True)
return {k: v.to(torch.cuda.current_device()) for k, v in batch.items()}
(actor, actor_optim), (critic, critic_optim) = strategy.prepare((actor, actor_optim), (critic, critic_optim))
# configure trainer
trainer = PPOTrainer(
strategy,
actor,
critic,
reward_model,
initial_model,
actor_optim,
critic_optim,
kl_coef=args.kl_coef,
ptx_coef=args.ptx_coef,
max_epochs=args.max_epochs,
train_batch_size=args.train_batch_size,
experience_batch_size=args.experience_batch_size,
tokenizer=tokenize_fn,
max_length=128,
do_sample=True,
temperature=1.0,
top_k=50,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
trainer.fit(prompt_dataloader=prompt_dataloader,
pretrain_dataloader=pretrain_dataloader,
num_episodes=args.num_episodes,
max_timesteps=args.max_timesteps,
update_timesteps=args.update_timesteps)
# save model checkpoint after fitting
trainer.save_model(args.save_path, only_rank0=True, tokenizer=tokenizer)
# save optimizer checkpoint on all ranks
if args.need_optim_ckpt:
strategy.save_optimizer(actor_optim,
'actor_optim_checkpoint_prompts_%d.pt' % (torch.cuda.current_device()),
only_rank0=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--prompt_path', type=str, default=None, help='path to the prompt dataset')
parser.add_argument('--pretrain_dataset', type=str, default=None, help='path to the pretrained dataset')
parser.add_argument('--strategy',
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
default='naive',
help='strategy to use')
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt', 'llama'])
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--rm_path', type=str, default=None)
parser.add_argument('--rm_pretrain', type=str, default=None)
parser.add_argument('--save_path', type=str, default='actor_checkpoint_prompts')
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
parser.add_argument('--num_episodes', type=int, default=10)
parser.add_argument('--max_timesteps', type=int, default=10)
parser.add_argument('--update_timesteps', type=int, default=10)
parser.add_argument('--max_epochs', type=int, default=5)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--ptx_batch_size', type=int, default=1)
parser.add_argument('--experience_batch_size', type=int, default=8)
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
parser.add_argument('--kl_coef', type=float, default=0.1)
parser.add_argument('--ptx_coef', type=float, default=0.9)
args = parser.parse_args()
main(args)

View File

@ -0,0 +1,18 @@
set_n_least_used_CUDA_VISIBLE_DEVICES() {
local n=${1:-"9999"}
echo "GPU Memory Usage:"
local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv \
| tail -n +2 \
| nl -v 0 \
| tee /dev/tty \
| sort -g -k 2 \
| awk '{print $1}' \
| head -n $n)
export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g')
echo "Now CUDA_VISIBLE_DEVICES is set to:"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
}
set_n_least_used_CUDA_VISIBLE_DEVICES 2
torchrun --standalone --nproc_per_node=2 train_prompts.py prompts.csv --strategy colossalai_zero2

View File

@ -0,0 +1,160 @@
import argparse
from random import randint
import loralib as lora
import torch
from coati.dataset import HhRlhfDataset, RmStaticDataset
from coati.models import LogExpLoss, LogSigLoss
from coati.models.base import RewardModel
from coati.models.bloom import BLOOMRM
from coati.models.deberta import DebertaRM
from coati.models.gpt import GPTRM
from coati.models.llama import LlamaRM
from coati.models.opt import OPTRM
from coati.trainer import RewardModelTrainer
from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
from coati.utils import prepare_llama_tokenizer_and_embedding
from datasets import load_dataset
from torch.optim import Adam
from transformers import AutoTokenizer, BloomTokenizerFast, DebertaV2Tokenizer, LlamaTokenizer
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from colossalai.nn.optimizer import HybridAdam
def train(args):
# configure strategy
if args.strategy == 'naive':
strategy = NaiveStrategy()
elif args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda')
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
# configure model
with strategy.model_init_context():
if args.model == 'bloom':
model = BLOOMRM(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
elif args.model == 'opt':
model = OPTRM(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
elif args.model == 'gpt2':
model = GPTRM(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
elif args.model == 'deberta':
model = DebertaRM(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
elif args.model == 'llama':
model = LlamaRM(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
else:
raise ValueError(f'Unsupported model "{args.model}"')
if args.model_path is not None:
state_dict = torch.load(args.model_path)
model.load_state_dict(state_dict)
model = model.to(torch.float16)
# configure tokenizer
if args.model == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
elif args.model == 'bloom':
tokenizer = BloomTokenizerFast.from_pretrained('bigscience/bloom-560m')
elif args.model == 'opt':
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
elif args.model == 'deberta':
tokenizer = DebertaV2Tokenizer.from_pretrained('microsoft/deberta-v3-large')
elif args.model == 'llama':
tokenizer = LlamaTokenizer.from_pretrained(args.pretrain)
else:
raise ValueError(f'Unsupported model "{args.model}"')
max_len = args.max_len
if args.model == 'llama':
tokenizer = prepare_llama_tokenizer_and_embedding(tokenizer, model)
else:
tokenizer.pad_token = tokenizer.eos_token
# configure optimizer
if args.strategy.startswith('colossalai'):
optim = HybridAdam(model.parameters(), lr=5e-6)
else:
optim = Adam(model.parameters(), lr=5e-6)
# configure loss function
if args.loss_fn == 'log_sig':
loss_fn = LogSigLoss()
elif args.loss_fn == 'log_exp':
loss_fn = LogExpLoss()
else:
raise ValueError(f'Unsupported loss function "{args.loss_fn}"')
# prepare for data and dataset
if args.subset is not None:
data = load_dataset(args.dataset, data_dir=args.subset)
else:
data = load_dataset(args.dataset)
if args.test:
train_data = data['train'].select(range(100))
eval_data = data['test'].select(range(10))
else:
train_data = data['train']
eval_data = data['test']
valid_data = data['test'].select((randint(0, len(eval_data) - 1) for _ in range(len(eval_data) // 5)))
if args.dataset == 'Dahoas/rm-static':
train_dataset = RmStaticDataset(train_data, tokenizer, max_len)
valid_dataset = RmStaticDataset(valid_data, tokenizer, max_len)
eval_dataset = RmStaticDataset(eval_data, tokenizer, max_len)
elif args.dataset == 'Anthropic/hh-rlhf':
train_dataset = HhRlhfDataset(train_data, tokenizer, max_len)
valid_dataset = HhRlhfDataset(valid_data, tokenizer, max_len)
eval_dataset = HhRlhfDataset(eval_data, tokenizer, max_len)
else:
raise ValueError(f'Unsupported dataset "{args.dataset}"')
trainer = RewardModelTrainer(model=model,
strategy=strategy,
optim=optim,
loss_fn=loss_fn,
train_dataset=train_dataset,
valid_dataset=valid_dataset,
eval_dataset=eval_dataset,
batch_size=args.batch_size,
max_epochs=args.max_epochs)
trainer.fit()
# save model checkpoint after fitting on only rank0
trainer.save_model(path=args.save_path, only_rank0=True, tokenizer=tokenizer)
# save optimizer checkpoint on all ranks
if args.need_optim_ckpt:
strategy.save_optimizer(trainer.optimizer,
'rm_optim_checkpoint_%d.pt' % (torch.cuda.current_device()),
only_rank0=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--strategy',
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
default='naive')
parser.add_argument('--model', choices=['gpt2', 'bloom', 'opt', 'deberta', 'llama'], default='bloom')
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--model_path', type=str, default=None)
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
parser.add_argument('--dataset',
type=str,
choices=['Anthropic/hh-rlhf', 'Dahoas/rm-static'],
default='Dahoas/rm-static')
parser.add_argument('--subset', type=str, default=None)
parser.add_argument('--save_path', type=str, default='rm_ckpt')
parser.add_argument('--max_epochs', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--max_len', type=int, default=512)
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
parser.add_argument('--loss_fn', type=str, default='log_sig', choices=['log_sig', 'log_exp'])
parser.add_argument('--test', type=bool, default=False)
args = parser.parse_args()
train(args)

View File

@ -0,0 +1,8 @@
set_n_least_used_CUDA_VISIBLE_DEVICES 1
python train_reward_model.py --pretrain 'microsoft/deberta-v3-large' \
--model 'deberta' \
--strategy naive \
--loss_fn 'log_exp'\
--save_path 'rmstatic.pt' \
--test True

View File

@ -0,0 +1,184 @@
import argparse
import os
import loralib as lora
import torch
import torch.distributed as dist
from coati.dataset import DataCollatorForSupervisedDataset, SFTDataset, SupervisedDataset
from coati.models.base import RewardModel
from coati.models.bloom import BLOOMLM
from coati.models.gpt import GPTLM
from coati.models.llama import LlamaLM
from coati.models.opt import OPTLM
from coati.trainer import SFTTrainer
from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
from coati.utils import prepare_llama_tokenizer_and_embedding
from datasets import load_dataset
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from transformers import AutoTokenizer, BloomTokenizerFast
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import HybridAdam
from colossalai.tensor import ColoParameter
def train(args):
# configure strategy
if args.strategy == 'naive':
strategy = NaiveStrategy()
elif args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda')
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
# configure model
with strategy.model_init_context():
if args.model == 'bloom':
model = BLOOMLM(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
elif args.model == 'opt':
model = OPTLM(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
elif args.model == 'gpt2':
model = GPTLM(pretrained=args.pretrain, lora_rank=args.lora_rank).to(torch.cuda.current_device())
elif args.model == 'llama':
model = LlamaLM(pretrained=args.pretrain, lora_rank=args.lora_rank,
checkpoint=True).to(torch.float16).to(torch.cuda.current_device())
else:
raise ValueError(f'Unsupported model "{args.model}"')
# configure tokenizer
if args.model == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'bloom':
tokenizer = BloomTokenizerFast.from_pretrained(args.pretrain)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'opt':
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
elif args.model == 'llama':
tokenizer = AutoTokenizer.from_pretrained(
args.pretrain,
padding_side="right",
use_fast=False,
)
tokenizer.eos_token = '<\s>'
else:
raise ValueError(f'Unsupported model "{args.model}"')
tokenizer.pad_token = tokenizer.eos_token
if args.model == 'llama':
tokenizer = prepare_llama_tokenizer_and_embedding(tokenizer, model)
if args.strategy == 'colossalai_gemini':
# this is a hack to deal with the resized embedding
# to make sure all parameters are ColoParameter for Colossal-AI Gemini Compatiblity
for name, param in model.named_parameters():
if not isinstance(param, ColoParameter):
sub_module_name = '.'.join(name.split('.')[:-1])
weight_name = name.split('.')[-1]
sub_module = model.get_submodule(sub_module_name)
setattr(sub_module, weight_name, ColoParameter(param))
else:
tokenizer.pad_token = tokenizer.eos_token
# configure optimizer
if args.strategy.startswith('colossalai'):
optim = HybridAdam(model.parameters(), lr=args.lr, clipping_norm=1.0)
else:
optim = Adam(model.parameters(), lr=args.lr)
logger = get_dist_logger()
# configure dataset
if args.dataset == 'yizhongw/self_instruct':
train_data = load_dataset(args.dataset, 'super_natural_instructions', split='train')
eval_data = load_dataset(args.dataset, 'super_natural_instructions', split='test')
train_dataset = SFTDataset(train_data, tokenizer)
eval_dataset = SFTDataset(eval_data, tokenizer)
else:
train_dataset = SupervisedDataset(tokenizer=tokenizer,
data_path=args.dataset,
max_datasets_size=args.max_datasets_size)
eval_dataset = None
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
if dist.is_initialized() and dist.get_world_size() > 1:
train_sampler = DistributedSampler(train_dataset,
shuffle=True,
seed=42,
drop_last=True,
rank=dist.get_rank(),
num_replicas=dist.get_world_size())
if eval_dataset is not None:
eval_sampler = DistributedSampler(eval_dataset,
shuffle=False,
seed=42,
drop_last=False,
rank=dist.get_rank(),
num_replicas=dist.get_world_size())
else:
train_sampler = None
eval_sampler = None
train_dataloader = DataLoader(train_dataset,
shuffle=(train_sampler is None),
sampler=train_sampler,
batch_size=args.batch_size,
collate_fn=data_collator,
pin_memory=True)
if eval_dataset is not None:
eval_dataloader = DataLoader(eval_dataset,
shuffle=(eval_sampler is None),
sampler=eval_sampler,
batch_size=args.batch_size,
collate_fn=data_collator,
pin_memory=True)
else:
eval_dataloader = None
trainer = SFTTrainer(model=model,
strategy=strategy,
optim=optim,
train_dataloader=train_dataloader,
eval_dataloader=eval_dataloader,
batch_size=args.batch_size,
max_epochs=args.max_epochs,
accimulation_steps=args.accimulation_steps)
trainer.fit(logger=logger, log_interval=args.log_interval)
# save model checkpoint after fitting on only rank0
trainer.save_model(path=args.save_path, only_rank0=True, tokenizer=tokenizer)
# save optimizer checkpoint on all ranks
if args.need_optim_ckpt:
strategy.save_optimizer(trainer.optimizer,
'rm_optim_checkpoint_%d.pt' % (torch.cuda.current_device()),
only_rank0=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--strategy',
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
default='naive')
parser.add_argument('--model', choices=['gpt2', 'bloom', 'opt', 'llama'], default='bloom')
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--dataset', type=str, default=None)
parser.add_argument('--max_datasets_size', type=int, default=None)
parser.add_argument('--save_path', type=str, default='output')
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
parser.add_argument('--max_epochs', type=int, default=3)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
parser.add_argument('--log_interval', type=int, default=100, help="how many steps to log")
parser.add_argument('--lr', type=float, default=5e-6)
parser.add_argument('--accimulation_steps', type=int, default=8)
args = parser.parse_args()
train(args)

View File

@ -0,0 +1,12 @@
torchrun --standalone --nproc_per_node=4 train_sft.py \
--pretrain "/path/to/LLaMa-7B/" \
--model 'llama' \
--strategy colossalai_zero2 \
--log_interval 10 \
--save_path /path/to/Coati-7B \
--dataset /path/to/data.json \
--batch_size 4 \
--accimulation_steps 8 \
--lr 2e-5 \
--max_datasets_size 512 \
--max_epochs 1 \

View File

@ -0,0 +1,111 @@
# Inference
We provide an online inference server and a benchmark. We aim to run inference on single GPU, so quantization is essential when using large models.
We support 8-bit quantization (RTN), which is powered by [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) and [transformers](https://github.com/huggingface/transformers). And 4-bit quantization (GPTQ), which is powered by [gptq](https://github.com/IST-DASLab/gptq) and [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). We also support FP16 inference.
We only support LLaMA family models now.
## Choosing precision (quantization)
**FP16**: Fastest, best output quality, highest memory usage
**8-bit**: Slow, easier setup (originally supported by transformers), lower output quality (due to RTN), **recommended for first-timers**
**4-bit**: Faster, lowest memory usage, higher output quality (due to GPTQ), but more difficult setup
## Hardware requirements for LLaMA
Tha data is from [LLaMA Int8 4bit ChatBot Guide v2](https://rentry.org/llama-tard-v2).
### 8-bit
| Model | Min GPU RAM | Recommended GPU RAM | Min RAM/Swap | Card examples |
| :---: | :---: | :---: | :---: | :---: |
| LLaMA-7B | 9.2GB | 10GB | 24GB | 3060 12GB, RTX 3080 10GB, RTX 3090 |
| LLaMA-13B | 16.3GB | 20GB | 32GB | RTX 3090 Ti, RTX 4090 |
| LLaMA-30B | 36GB | 40GB | 64GB | A6000 48GB, A100 40GB |
| LLaMA-65B | 74GB | 80GB | 128GB | A100 80GB |
### 4-bit
| Model | Min GPU RAM | Recommended GPU RAM | Min RAM/Swap | Card examples |
| :---: | :---: | :---: | :---: | :---: |
| LLaMA-7B | 3.5GB | 6GB | 16GB | RTX 1660, 2060, AMD 5700xt, RTX 3050, 3060 |
| LLaMA-13B | 6.5GB | 10GB | 32GB | AMD 6900xt, RTX 2060 12GB, 3060 12GB, 3080, A2000 |
| LLaMA-30B | 15.8GB | 20GB | 64GB | RTX 3080 20GB, A4500, A5000, 3090, 4090, 6000, Tesla V100 |
| LLaMA-65B | 31.2GB | 40GB | 128GB | A100 40GB, 2x3090, 2x4090, A40, RTX A6000, 8000, Titan Ada |
## 8-bit setup
8-bit quantization is originally supported by the latest [transformers](https://github.com/huggingface/transformers). Please install it from source.
Please ensure you have downloaded HF-format model weights of LLaMA models.
Usage:
```python
from transformers import LlamaForCausalLM
USE_8BIT = True # use 8-bit quantization; otherwise, use fp16
model = LlamaForCausalLM.from_pretrained(
"pretrained/path",
load_in_8bit=USE_8BIT,
torch_dtype=torch.float16,
device_map="auto",
)
if not USE_8BIT:
model.half() # use fp16
model.eval()
```
**Troubleshooting**: if you get error indicating your CUDA-related libraries not found when loading 8-bit model, you can check whether your `LD_LIBRARY_PATH` is correct.
E.g. you can set `export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH`.
## 4-bit setup
Please ensure you have downloaded HF-format model weights of LLaMA models first.
Then you can follow [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). This lib provides efficient CUDA kernels and weight convertion script.
After installing this lib, we may convert the original HF-format LLaMA model weights to 4-bit version.
```shell
CUDA_VISIBLE_DEVICES=0 python llama.py /path/to/pretrained/llama-7b c4 --wbits 4 --groupsize 128 --save llama7b-4bit.pt
```
Run this command in your cloned `GPTQ-for-LLaMa` directory, then you will get a 4-bit weight file `llama7b-4bit-128g.pt`.
**Troubleshooting**: if you get error about `position_ids`, you can checkout to commit `50287c3b9ae4a3b66f6b5127c643ec39b769b155`(`GPTQ-for-LLaMa` repo).
## Online inference server
In this directory:
```shell
export CUDA_VISIBLE_DEVICES=0
# fp16, will listen on 0.0.0.0:7070 by default
python server.py /path/to/pretrained
# 8-bit, will listen on localhost:8080
python server.py /path/to/pretrained --quant 8bit --http_host localhost --http_port 8080
# 4-bit
python server.py /path/to/pretrained --quant 4bit --gptq_checkpoint /path/to/llama7b-4bit-128g.pt --gptq_group_size 128
```
## Benchmark
In this directory:
```shell
export CUDA_VISIBLE_DEVICES=0
# fp16
python benchmark.py /path/to/pretrained
# 8-bit
python benchmark.py /path/to/pretrained --quant 8bit
# 4-bit
python benchmark.py /path/to/pretrained --quant 4bit --gptq_checkpoint /path/to/llama7b-4bit-128g.pt --gptq_group_size 128
```
This benchmark will record throughput and peak CUDA memory usage.

View File

@ -0,0 +1,132 @@
# Adapted from https://github.com/tloen/alpaca-lora/blob/main/generate.py
import argparse
from time import time
import torch
from llama_gptq import load_quant
from transformers import AutoTokenizer, GenerationConfig, LlamaForCausalLM
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
@torch.no_grad()
def evaluate(
model,
tokenizer,
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
**kwargs,
):
prompt = generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].cuda()
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
do_sample=True,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
n_new_tokens = s.size(0) - input_ids.size(1)
return output.split("### Response:")[1].strip(), n_new_tokens
instructions = [
"Tell me about alpacas.",
"Tell me about the president of Mexico in 2019.",
"Tell me about the king of France in 2019.",
"List all Canadian provinces in alphabetical order.",
"Write a Python program that prints the first 10 Fibonacci numbers.",
"Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.",
"Tell me five words that rhyme with 'shock'.",
"Translate the sentence 'I have no mouth but I must scream' into Spanish.",
"Count up from 1 to 500.",
# ===
"How to play support in legends of league",
"Write a Python program that calculate Fibonacci numbers.",
]
inst = [instructions[0]] * 4
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'pretrained',
help='Path to pretrained model. Can be a local path or a model name from the HuggingFace model hub.')
parser.add_argument('--quant',
choices=['8bit', '4bit'],
default=None,
help='Quantization mode. Default: None (no quantization, fp16).')
parser.add_argument(
'--gptq_checkpoint',
default=None,
help='Path to GPTQ checkpoint. This is only useful when quantization mode is 4bit. Default: None.')
parser.add_argument('--gptq_group_size',
type=int,
default=128,
help='Group size for GPTQ. This is only useful when quantization mode is 4bit. Default: 128.')
args = parser.parse_args()
if args.quant == '4bit':
assert args.gptq_checkpoint is not None, 'Please specify a GPTQ checkpoint.'
tokenizer = AutoTokenizer.from_pretrained(args.pretrained)
if args.quant == '4bit':
model = load_quant(args.pretrained, args.gptq_checkpoint, 4, args.gptq_group_size)
model.cuda()
else:
model = LlamaForCausalLM.from_pretrained(
args.pretrained,
load_in_8bit=(args.quant == '8bit'),
torch_dtype=torch.float16,
device_map="auto",
)
if args.quant != '8bit':
model.half() # seems to fix bugs for some users.
model.eval()
total_tokens = 0
start = time()
for instruction in instructions:
print(f"Instruction: {instruction}")
resp, tokens = evaluate(model, tokenizer, instruction, temparature=0.2, num_beams=1)
total_tokens += tokens
print(f"Response: {resp}")
print('\n----------------------------\n')
duration = time() - start
print(f'Total time: {duration:.3f} s, {total_tokens/duration:.3f} tokens/s')
print(f'Peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.3f} GB')

View File

@ -0,0 +1,5 @@
from .loader import load_quant
__all__ = [
'load_quant',
]

View File

@ -0,0 +1,41 @@
import torch
import torch.nn as nn
import transformers
from transformers import LlamaConfig, LlamaForCausalLM
from .model_utils import find_layers
from .quant import make_quant
def load_quant(pretrained: str, checkpoint: str, wbits: int, groupsize: int):
config = LlamaConfig.from_pretrained(pretrained)
def noop(*args, **kwargs):
pass
torch.nn.init.kaiming_uniform_ = noop
torch.nn.init.uniform_ = noop
torch.nn.init.normal_ = noop
torch.set_default_dtype(torch.half)
transformers.modeling_utils._init_weights = False
torch.set_default_dtype(torch.half)
model = LlamaForCausalLM(config)
torch.set_default_dtype(torch.float)
model = model.eval()
layers = find_layers(model)
for name in ['lm_head']:
if name in layers:
del layers[name]
make_quant(model, layers, wbits, groupsize)
print(f'Loading model with {wbits} bits...')
if checkpoint.endswith('.safetensors'):
from safetensors.torch import load_file as safe_load
model.load_state_dict(safe_load(checkpoint))
else:
model.load_state_dict(torch.load(checkpoint))
model.seqlen = 2048
print('Done.')
return model

View File

@ -0,0 +1,13 @@
# copied from https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/past/modelutils.py
import torch
import torch.nn as nn
def find_layers(module, layers=[nn.Conv2d, nn.Linear], name=''):
if type(module) in layers:
return {name: module}
res = {}
for name1, child in module.named_children():
res.update(find_layers(child, layers=layers, name=name + '.' + name1 if name != '' else name1))
return res

View File

@ -0,0 +1,283 @@
# copied from https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/past/quant.py
import math
import numpy as np
import torch
import torch.nn as nn
def quantize(x, scale, zero, maxq):
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
return scale * (q - zero)
class Quantizer(nn.Module):
def __init__(self, shape=1):
super(Quantizer, self).__init__()
self.register_buffer('maxq', torch.tensor(0))
self.register_buffer('scale', torch.zeros(shape))
self.register_buffer('zero', torch.zeros(shape))
def configure(self, bits, perchannel=False, sym=True, mse=False, norm=2.4, grid=100, maxshrink=.8):
self.maxq = torch.tensor(2**bits - 1)
self.perchannel = perchannel
self.sym = sym
self.mse = mse
self.norm = norm
self.grid = grid
self.maxshrink = maxshrink
def find_params(self, x, weight=False):
dev = x.device
self.maxq = self.maxq.to(dev)
shape = x.shape
if self.perchannel:
if weight:
x = x.flatten(1)
else:
if len(shape) == 4:
x = x.permute([1, 0, 2, 3])
x = x.flatten(1)
if len(shape) == 3:
x = x.reshape((-1, shape[-1])).t()
if len(shape) == 2:
x = x.t()
else:
x = x.flatten().unsqueeze(0)
tmp = torch.zeros(x.shape[0], device=dev)
xmin = torch.minimum(x.min(1)[0], tmp)
xmax = torch.maximum(x.max(1)[0], tmp)
if self.sym:
xmax = torch.maximum(torch.abs(xmin), xmax)
tmp = xmin < 0
if torch.any(tmp):
xmin[tmp] = -xmax[tmp]
tmp = (xmin == 0) & (xmax == 0)
xmin[tmp] = -1
xmax[tmp] = +1
self.scale = (xmax - xmin) / self.maxq
if self.sym:
self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2)
else:
self.zero = torch.round(-xmin / self.scale)
if self.mse:
best = torch.full([x.shape[0]], float('inf'), device=dev)
for i in range(int(self.maxshrink * self.grid)):
p = 1 - i / self.grid
xmin1 = p * xmin
xmax1 = p * xmax
scale1 = (xmax1 - xmin1) / self.maxq
zero1 = torch.round(-xmin1 / scale1) if not self.sym else self.zero
q = quantize(x, scale1.unsqueeze(1), zero1.unsqueeze(1), self.maxq)
q -= x
q.abs_()
q.pow_(self.norm)
err = torch.sum(q, 1)
tmp = err < best
if torch.any(tmp):
best[tmp] = err[tmp]
self.scale[tmp] = scale1[tmp]
self.zero[tmp] = zero1[tmp]
if not self.perchannel:
if weight:
tmp = shape[0]
else:
tmp = shape[1] if len(shape) != 3 else shape[2]
self.scale = self.scale.repeat(tmp)
self.zero = self.zero.repeat(tmp)
if weight:
shape = [-1] + [1] * (len(shape) - 1)
self.scale = self.scale.reshape(shape)
self.zero = self.zero.reshape(shape)
return
if len(shape) == 4:
self.scale = self.scale.reshape((1, -1, 1, 1))
self.zero = self.zero.reshape((1, -1, 1, 1))
if len(shape) == 3:
self.scale = self.scale.reshape((1, 1, -1))
self.zero = self.zero.reshape((1, 1, -1))
if len(shape) == 2:
self.scale = self.scale.unsqueeze(0)
self.zero = self.zero.unsqueeze(0)
def quantize(self, x):
if self.ready():
return quantize(x, self.scale, self.zero, self.maxq)
return x
def enabled(self):
return self.maxq > 0
def ready(self):
return torch.all(self.scale != 0)
try:
import quant_cuda
except:
print('CUDA extension not installed.')
# Assumes layer is perfectly divisible into 256 * 256 blocks
class QuantLinear(nn.Module):
def __init__(self, bits, groupsize, infeatures, outfeatures):
super().__init__()
if bits not in [2, 3, 4, 8]:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
self.infeatures = infeatures
self.outfeatures = outfeatures
self.bits = bits
if groupsize != -1 and groupsize < 32 and groupsize != int(math.pow(2, int(math.log2(groupsize)))):
raise NotImplementedError("groupsize supports powers of 2 greater than 32. (e.g. : 32,64,128,etc)")
groupsize = groupsize if groupsize != -1 else infeatures
self.groupsize = groupsize
self.register_buffer(
'qzeros', torch.zeros((math.ceil(infeatures / groupsize), outfeatures // 256 * (bits * 8)),
dtype=torch.int))
self.register_buffer('scales', torch.zeros((math.ceil(infeatures / groupsize), outfeatures)))
self.register_buffer('bias', torch.zeros(outfeatures))
self.register_buffer('qweight', torch.zeros((infeatures // 256 * (bits * 8), outfeatures), dtype=torch.int))
self._initialized_quant_state = False
def pack(self, linear, scales, zeros):
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
scale_zeros = zeros * scales
self.scales = scales.clone()
if linear.bias is not None:
self.bias = linear.bias.clone()
intweight = []
for idx in range(self.infeatures):
g_idx = idx // self.groupsize
intweight.append(
torch.round((linear.weight.data[:, idx] + scale_zeros[g_idx]) / self.scales[g_idx]).to(torch.int)[:,
None])
intweight = torch.cat(intweight, dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(np.uint32)
qweight = np.zeros((intweight.shape[0] // 256 * (self.bits * 8), intweight.shape[1]), dtype=np.uint32)
i = 0
row = 0
while row < qweight.shape[0]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (32 // self.bits)):
qweight[row] |= intweight[j] << (self.bits * (j - i))
i += 32 // self.bits
row += 1
elif self.bits == 3:
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i))
i += 10
qweight[row] |= intweight[i] << 30
row += 1
qweight[row] |= (intweight[i] >> 2) & 1
i += 1
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i) + 1)
i += 10
qweight[row] |= intweight[i] << 31
row += 1
qweight[row] |= (intweight[i] >> 1) & 0x3
i += 1
for j in range(i, i + 10):
qweight[row] |= intweight[j] << (3 * (j - i) + 2)
i += 10
row += 1
else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
qweight = qweight.astype(np.int32)
self.qweight = torch.from_numpy(qweight)
zeros -= 1
zeros = zeros.numpy().astype(np.uint32)
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 256 * (self.bits * 8)), dtype=np.uint32)
i = 0
col = 0
while col < qzeros.shape[1]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (32 // self.bits)):
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
i += 32 // self.bits
col += 1
elif self.bits == 3:
for j in range(i, i + 10):
qzeros[:, col] |= zeros[:, j] << (3 * (j - i))
i += 10
qzeros[:, col] |= zeros[:, i] << 30
col += 1
qzeros[:, col] |= (zeros[:, i] >> 2) & 1
i += 1
for j in range(i, i + 10):
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 1)
i += 10
qzeros[:, col] |= zeros[:, i] << 31
col += 1
qzeros[:, col] |= (zeros[:, i] >> 1) & 0x3
i += 1
for j in range(i, i + 10):
qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 2)
i += 10
col += 1
else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
qzeros = qzeros.astype(np.int32)
self.qzeros = torch.from_numpy(qzeros)
def forward(self, x):
intermediate_dtype = torch.float32
if not self._initialized_quant_state:
# Do we even have a bias? Check for at least one non-zero element.
if self.bias is not None and bool(torch.any(self.bias != 0)):
# Then make sure it's the right type.
self.bias.data = self.bias.data.to(intermediate_dtype)
else:
self.bias = None
outshape = list(x.shape)
outshape[-1] = self.outfeatures
x = x.reshape(-1, x.shape[-1])
if self.bias is None:
y = torch.zeros(x.shape[0], outshape[-1], dtype=intermediate_dtype, device=x.device)
else:
y = self.bias.clone().repeat(x.shape[0], 1)
output_dtype = x.dtype
x = x.to(intermediate_dtype)
if self.bits == 2:
quant_cuda.vecquant2matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
elif self.bits == 3:
quant_cuda.vecquant3matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
elif self.bits == 4:
quant_cuda.vecquant4matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
elif self.bits == 8:
quant_cuda.vecquant8matmul(x, self.qweight, y, self.scales, self.qzeros, self.groupsize)
else:
raise NotImplementedError("Only 2,3,4,8 bits are supported.")
y = y.to(output_dtype)
return y.reshape(outshape)
def make_quant(module, names, bits, groupsize, name=''):
if isinstance(module, QuantLinear):
return
for attr in dir(module):
tmp = getattr(module, attr)
name1 = name + '.' + attr if name != '' else attr
if name1 in names:
setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features))
for name1, child in module.named_children():
make_quant(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1)

View File

@ -0,0 +1,27 @@
from json import JSONDecodeError
from locust import HttpUser, task
samples = [[
dict(
instruction='Who is the best player in the history of NBA?',
response=
'The best player in the history of the NBA is widely considered to be Michael Jordan. He is one of the most successful players in the league, having won 6 NBA championships with the Chicago Bulls and 5 more with the Washington Wizards. He is a 5-time MVP, 1'
),
dict(instruction='continue this talk', response=''),
], [
dict(instruction='Who is the best player in the history of NBA?', response=''),
]]
class GenerationUser(HttpUser):
@task
def generate(self):
for sample in samples:
data = {'max_new_tokens': 64, 'history': sample}
with self.client.post('/generate', json=data, catch_response=True) as response:
if response.status_code in (200, 406):
response.success()
else:
response.failure('Response wrong')

View File

@ -0,0 +1,10 @@
fastapi
locustio
numpy
pydantic
safetensors
slowapi
sse_starlette
torch
uvicorn
git+https://github.com/huggingface/transformers

View File

@ -0,0 +1,165 @@
import argparse
import os
from threading import Lock
from typing import Dict, Generator, List, Optional
import torch
import uvicorn
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from llama_gptq import load_quant
from pydantic import BaseModel, Field
from slowapi import Limiter, _rate_limit_exceeded_handler
from slowapi.errors import RateLimitExceeded
from slowapi.util import get_remote_address
from sse_starlette.sse import EventSourceResponse
from transformers import AutoTokenizer, GenerationConfig, LlamaForCausalLM
from utils import ChatPromptProcessor, Dialogue, LockedIterator, sample_streamingly, update_model_kwargs_fn
CONTEXT = 'Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.'
MAX_LEN = 2048
running_lock = Lock()
class GenerationTaskReq(BaseModel):
max_new_tokens: int = Field(gt=0, le=512, example=64)
history: List[Dialogue] = Field(min_items=1)
top_k: Optional[int] = Field(default=None, gt=0, example=50)
top_p: Optional[float] = Field(default=None, gt=0.0, lt=1.0, example=0.5)
temperature: Optional[float] = Field(default=None, gt=0.0, lt=1.0, example=0.7)
limiter = Limiter(key_func=get_remote_address)
app = FastAPI()
app.state.limiter = limiter
app.add_exception_handler(RateLimitExceeded, _rate_limit_exceeded_handler)
# set CORS
origin_spec_from_env = os.environ.get('CORS_ORIGIN', None)
if origin_spec_from_env is not None:
# allow CORS from the specified origins
origins = os.environ['CORS_ORIGIN'].split(',')
else:
# allow CORS from all origins
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def generate_streamingly(prompt, max_new_tokens, top_k, top_p, temperature):
inputs = {k: v.cuda() for k, v in tokenizer(prompt, return_tensors="pt").items()}
model_kwargs = {
'max_generate_tokens': max_new_tokens,
'early_stopping': True,
'top_k': top_k,
'top_p': top_p,
'temperature': temperature,
'prepare_inputs_fn': model.prepare_inputs_for_generation,
'update_model_kwargs_fn': update_model_kwargs_fn,
}
is_first_word = True
generator = LockedIterator(sample_streamingly(model, **inputs, **model_kwargs), running_lock)
for output in generator:
output = output.cpu()
tokens = tokenizer.convert_ids_to_tokens(output, skip_special_tokens=True)
current_sub_tokens = []
for token in tokens:
if token in tokenizer.all_special_tokens:
continue
current_sub_tokens.append(token)
if current_sub_tokens:
out_string = tokenizer.sp_model.decode(current_sub_tokens)
if is_first_word:
out_string = out_string.lstrip()
is_first_word = False
elif current_sub_tokens[0].startswith(''):
# whitespace will be ignored by the frontend
out_string = ' ' + out_string
yield out_string
async def event_generator(request: Request, generator: Generator):
while True:
if await request.is_disconnected():
break
try:
yield {'event': 'generate', 'data': next(generator)}
except StopIteration:
yield {'event': 'end', 'data': ''}
break
@app.post('/generate/stream')
@limiter.limit('1/second')
def generate(data: GenerationTaskReq, request: Request):
prompt = prompt_processor.preprocess_prompt(data.history, data.max_new_tokens)
event_source = event_generator(
request, generate_streamingly(prompt, data.max_new_tokens, data.top_k, data.top_p, data.temperature))
return EventSourceResponse(event_source)
@app.post('/generate')
@limiter.limit('1/second')
def generate_no_stream(data: GenerationTaskReq, request: Request):
prompt = prompt_processor.preprocess_prompt(data.history, data.max_new_tokens)
inputs = {k: v.cuda() for k, v in tokenizer(prompt, return_tensors="pt").items()}
with running_lock:
output = model.generate(**inputs, **data.dict(exclude={'history'}))
output = output.cpu()
prompt_len = inputs['input_ids'].size(1)
response = output[0, prompt_len:]
out_string = tokenizer.decode(response, skip_special_tokens=True)
return out_string.lstrip()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'pretrained',
help='Path to pretrained model. Can be a local path or a model name from the HuggingFace model hub.')
parser.add_argument('--quant',
choices=['8bit', '4bit'],
default=None,
help='Quantization mode. Default: None (no quantization, fp16).')
parser.add_argument(
'--gptq_checkpoint',
default=None,
help='Path to GPTQ checkpoint. This is only useful when quantization mode is 4bit. Default: None.')
parser.add_argument('--gptq_group_size',
type=int,
default=128,
help='Group size for GPTQ. This is only useful when quantization mode is 4bit. Default: 128.')
parser.add_argument('--http_host', default='0.0.0.0')
parser.add_argument('--http_port', type=int, default=7070)
args = parser.parse_args()
if args.quant == '4bit':
assert args.gptq_checkpoint is not None, 'Please specify a GPTQ checkpoint.'
tokenizer = AutoTokenizer.from_pretrained(args.pretrained)
prompt_processor = ChatPromptProcessor(tokenizer, CONTEXT, MAX_LEN)
if args.quant == '4bit':
model = load_quant(args.pretrained, args.gptq_checkpoint, 4, args.gptq_group_size)
model.cuda()
else:
model = LlamaForCausalLM.from_pretrained(
args.pretrained,
load_in_8bit=(args.quant == '8bit'),
torch_dtype=torch.float16,
device_map="auto",
)
if args.quant != '8bit':
model.half() # seems to fix bugs for some users.
model.eval()
config = uvicorn.Config(app, host=args.http_host, port=args.http_port)
server = uvicorn.Server(config=config)
server.run()

View File

@ -0,0 +1,56 @@
import os
from transformers import AutoTokenizer
from utils import ChatPromptProcessor, Dialogue
CONTEXT = 'Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.'
tokenizer = AutoTokenizer.from_pretrained(os.environ['PRETRAINED_PATH'])
samples = [
([
Dialogue(
instruction='Who is the best player in the history of NBA?',
response=
'The best player in the history of the NBA is widely considered to be Michael Jordan. He is one of the most successful players in the league, having won 6 NBA championships with the Chicago Bulls and 5 more with the Washington Wizards. He is a 5-time MVP, 1'
),
Dialogue(instruction='continue this talk', response=''),
], 128,
'Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.\n\n### Instruction:\nWho is the best player in the history of NBA?\n\n### Response:\nThe best player in the history of the NBA is widely considered to be Michael Jordan. He is one of the most successful players in the league, having won 6 NBA championships with the Chicago Bulls and 5 more with the Washington Wizards. He is a 5-time MVP, 1\n\n### Instruction:\ncontinue this talk\n\n### Response:\n'
),
([
Dialogue(
instruction='Who is the best player in the history of NBA?',
response=
'The best player in the history of the NBA is widely considered to be Michael Jordan. He is one of the most successful players in the league, having won 6 NBA championships with the Chicago Bulls and 5 more with the Washington Wizards. He is a 5-time MVP, 1'
),
Dialogue(instruction='continue this talk', response=''),
], 200,
'Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.\n\n### Instruction:\ncontinue this talk\n\n### Response:\n'
),
([
Dialogue(
instruction='Who is the best player in the history of NBA?',
response=
'The best player in the history of the NBA is widely considered to be Michael Jordan. He is one of the most successful players in the league, having won 6 NBA championships with the Chicago Bulls and 5 more with the Washington Wizards. He is a 5-time MVP, 1'
),
Dialogue(instruction='continue this talk', response=''),
], 211,
'Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.\n\n### Instruction:\ncontinue this\n\n### Response:\n'
),
([
Dialogue(instruction='Who is the best player in the history of NBA?', response=''),
], 128,
'Below is an instruction that describes a task. Write a response that appropriately completes the request. Do not generate new instructions.\n\n### Instruction:\nWho is the best player in the history of NBA?\n\n### Response:\n'
),
]
def test_chat_prompt_processor():
processor = ChatPromptProcessor(tokenizer, CONTEXT, 256)
for history, max_new_tokens, result in samples:
prompt = processor.preprocess_prompt(history, max_new_tokens)
assert prompt == result
if __name__ == '__main__':
test_chat_prompt_processor()

View File

@ -0,0 +1,179 @@
from threading import Lock
from typing import Any, Callable, Generator, List, Optional
import torch
import torch.distributed as dist
import torch.nn as nn
from pydantic import BaseModel, Field
try:
from transformers.generation_logits_process import (
LogitsProcessorList,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
)
except ImportError:
from transformers.generation import LogitsProcessorList, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper
def prepare_logits_processor(top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None) -> LogitsProcessorList:
processor_list = LogitsProcessorList()
if temperature is not None and temperature != 1.0:
processor_list.append(TemperatureLogitsWarper(temperature))
if top_k is not None and top_k != 0:
processor_list.append(TopKLogitsWarper(top_k))
if top_p is not None and top_p < 1.0:
processor_list.append(TopPLogitsWarper(top_p))
return processor_list
def _is_sequence_finished(unfinished_sequences: torch.Tensor) -> bool:
if dist.is_initialized() and dist.get_world_size() > 1:
# consider DP
unfinished_sequences = unfinished_sequences.clone()
dist.all_reduce(unfinished_sequences)
return unfinished_sequences.max() == 0
def sample_streamingly(model: nn.Module,
input_ids: torch.Tensor,
max_generate_tokens: int,
early_stopping: bool = False,
eos_token_id: Optional[int] = None,
pad_token_id: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
prepare_inputs_fn: Optional[Callable[[torch.Tensor, Any], dict]] = None,
update_model_kwargs_fn: Optional[Callable[[dict, Any], dict]] = None,
**model_kwargs) -> Generator:
logits_processor = prepare_logits_processor(top_k, top_p, temperature)
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
for _ in range(max_generate_tokens):
model_inputs = prepare_inputs_fn(input_ids, **model_kwargs) if prepare_inputs_fn is not None else {
'input_ids': input_ids
}
outputs = model(**model_inputs)
next_token_logits = outputs['logits'][:, -1, :]
# pre-process distribution
next_token_logits = logits_processor(input_ids, next_token_logits)
# sample
probs = torch.softmax(next_token_logits, dim=-1, dtype=torch.float)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
if pad_token_id is None:
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
yield next_tokens
# update generated ids, model inputs for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
if update_model_kwargs_fn is not None:
model_kwargs = update_model_kwargs_fn(outputs, **model_kwargs)
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id is not None:
unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long())
# stop when each sentence is finished if early_stopping=True
if early_stopping and _is_sequence_finished(unfinished_sequences):
break
def update_model_kwargs_fn(outputs: dict, **model_kwargs) -> dict:
if "past_key_values" in outputs:
model_kwargs["past"] = outputs["past_key_values"]
else:
model_kwargs["past"] = None
# update token_type_ids with last value
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
# update attention mask
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
return model_kwargs
class Dialogue(BaseModel):
instruction: str = Field(min_length=1, example='Count up from 1 to 500.')
response: str = Field(example='')
def _format_dialogue(instruction: str, response: str = ''):
return f'\n\n### Instruction:\n{instruction}\n\n### Response:\n{response}'
class ChatPromptProcessor:
def __init__(self, tokenizer, context: str, max_len: int = 2048):
self.tokenizer = tokenizer
self.context = context
self.max_len = max_len
# These will be initialized after the first call of preprocess_prompt()
self.context_len: Optional[int] = None
self.dialogue_placeholder_len: Optional[int] = None
def preprocess_prompt(self, history: List[Dialogue], max_new_tokens: int) -> str:
if self.context_len is None:
self.context_len = len(self.tokenizer(self.context)['input_ids'])
if self.dialogue_placeholder_len is None:
self.dialogue_placeholder_len = len(
self.tokenizer(_format_dialogue(''), add_special_tokens=False)['input_ids'])
prompt = self.context
# the last dialogue must be in the prompt
last_dialogue = history.pop()
# the response of the last dialogue is empty
assert last_dialogue.response == ''
if len(self.tokenizer(_format_dialogue(last_dialogue.instruction), add_special_tokens=False)
['input_ids']) + max_new_tokens + self.context_len >= self.max_len:
# to avoid truncate placeholder, apply truncate to the original instruction
instruction_truncated = self.tokenizer(last_dialogue.instruction,
add_special_tokens=False,
truncation=True,
max_length=(self.max_len - max_new_tokens - self.context_len -
self.dialogue_placeholder_len))['input_ids']
instruction_truncated = self.tokenizer.decode(instruction_truncated).lstrip()
prompt += _format_dialogue(instruction_truncated)
return prompt
res_len = self.max_len - max_new_tokens - len(self.tokenizer(prompt)['input_ids'])
rows = []
for dialogue in history[::-1]:
text = _format_dialogue(dialogue.instruction, dialogue.response)
cur_len = len(self.tokenizer(text, add_special_tokens=False)['input_ids'])
if res_len - cur_len < 0:
break
res_len -= cur_len
rows.insert(0, text)
prompt += ''.join(rows) + _format_dialogue(last_dialogue.instruction)
return prompt
class LockedIterator:
def __init__(self, it, lock: Lock) -> None:
self.lock = lock
self.it = iter(it)
def __iter__(self):
return self
def __next__(self):
with self.lock:
return next(self.it)

View File

@ -0,0 +1,6 @@
[pytest]
markers =
cpu: tests which can run on CPU
gpu: tests which requires a single GPU
dist: tests which are run in a multi-GPU or multi-machine environment
experiment: tests for experimental features

View File

@ -0,0 +1 @@
pytest

Some files were not shown because too many files have changed in this diff Show More